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A virial expansion of fluid pressure in powers of the density can be used to calculate a wealth of

thermodynamic information, but the Nth virial coefficient, which multiplies the Nth power of the density

in the expansion, becomes rapidly more complicated with increasing N. This Letter shows that the Nth

virial coefficient can be calculated using a method that scales exponentially with N in computer time and

memory. This is orders of magnitude more efficient than any existing method for large N, and the method

is simple and general. New results are presented for N ¼ 11 and 12 for hard spheres, andN ¼ 9 and 10 for

soft spheres.
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Introduction.—The pressure P of a fluid at temperature
T can be expanded in powers of the number density � using
the virial series

�P ¼ �þ B2ðTÞ�2 þ B3ðTÞ�3 . . . (1)

where � ¼ 1=ðkTÞ, k is the Boltzmann constant, and BN is
the virial coefficient of order N. The convergence is slow
for dense fluids, and it is often more accurate to find an
analytical representation of the pressure (such as a rational
function) that agrees with the calculated virial coefficients
[1]. High-order virial coefficients are extremely valuable,
whether or not direct summation of the series is used, but
they are difficult to calculate.

Calculation of the virial coefficient for hard spheres, in
particular, is an important and long-studied problem in
science. The hard-sphere potential is one of the simplest
potentials that can be used to describe departures from the
ideal gas law, and hard-sphere systems are structurally
similar to assemblies of real spherical particles. Virial
coefficients can be calculated more easily for hard spheres
than for more realistic potentials. The second, third, and
fourth virial coefficients are all known exactly. The fifth
virial coefficient was first calculated numerically by
Rosenbluth and Rosenbluth in 1954 [2]. In the 1960s the
work of Ree and Hoover, who calculated the sixth [3] and
seventh [4] virial coefficients, set out the methodology
which has been adopted in most subsequent studies. The
eighth virial coefficient was first calculated by van
Rensburg in 1993 [5], the ninth by Labik, Kolafa, and
Malijevsky in 2005 [6], and the tenth by Clisby and
McCoy in 2006 [7]. In general, these calculations also
improved on the precision of the lower-order virial coef-
ficients. The convergence of the virial series is an impor-
tant unsolved problem, which has also been considered
recently by Maestre et al. [8]. Higher-order virial coeffi-
cients are needed to resolve alternative theories concerning
the convergence of the virial series, but the enormous
number of integrals that need to be evaluated to obtain

eleventh and higher-order virial coefficients has prevented
any such calculations until now.
Virial coefficients for a system of spherical particles,

which interact through a pairwise potential U of their
separation r, are formally calculated as integrals over
products of Mayer f functions:

BN ¼ 1� N

N!

Z
. . .

Z
fBðrNÞdr12 . . . dr1N; (2)

where the functions fB are defined by

fBðrNÞ ¼
X
G

�Y
ij2G

fðrijÞ
�

(3)

and fðrijÞ is the Mayer f function given by fðrijÞ ¼
exp½��Uðr12Þ� � 1. The sum is over all the biconnected
graphs G on N vertices, where each vertex is associated
with a different particle [9]. The pairs of particles ij in the
product are all the pairs of vertices that are joined by edges
in graph G. Hence, BN is a sum of ‘‘diagram integrals’’,
with one diagram integral for each biconnected graph G.
In Fig. 1, (a) and (b) are biconnected graphs, (c) and (d)
are not.

There are 2NðN�1Þ=2 possible graphs on N vertices, and
most of these are biconnected for large N, so the time
required for the direct evaluation of the fB function using
Eq. (3) increases very rapidly as a function of N. The
computer memory needed to maintain a list of all the
biconnected graphs G increases at a similar rate.
Evaluation of BN by performing the integrals in Eqs. (2)
and (3) directly is not possible for N > 10 for hard spheres
and N > 8 for soft spheres, even when the permutation
symmetry of the graphs is taken into account for a
1-component system, which reduces the number of differ-

ent graphs to approximately 2NðN�1Þ=2=N! (that is, about
900 million for N ¼ 11, and over 170 times more than this
for N ¼ 12).
Method.—It is shown here that the function fB for N

particles can be evaluated using of order 3NN calculations,
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which means that the effort forN ¼ 12 is less than 3.3 times
that for N ¼ 11, and similarly for other values of N. The
saving in computer time relative to summing directly over
graphs increases rapidly with N. Furthermore, the memory
required is of order 2NN, which is available on modern
computers for values of N in excess of 20.

The sum of all 2NðN�1Þ=2 diagram integrals, including
graphs which are not biconnected or even connected, is
denoted fQ, and it can easily be calculated as a product

over all NðN � 1Þ=2 pairs of particles:

fQðrNÞ ¼
Y
ij

½1þ fðrijÞ�: (4)

From this function fQ, all diagram integrals corresponding

to disconnected graphs [such as Fig. 1(c)] are removed to
leave fC, which is defined as the sum of diagram integrals
of all connected graphs. This is done as follows. All dis-
connected diagram integrals on N vertices can be
expressed uniquely as the product of a connected diagram
on a proper subset S (size 1 toN � 1) of the vertices, which
contains the lowest-numbered vertex, and all diagrams
(connected or not) on the complement of S, called S�.
Therefore,

fCðrNÞ ¼ fQðrNÞ �
X
S

fCðSÞfQðS�Þ; (5)

where (S) denotes the coordinates of the vertices present
in S, and (S�) denotes the coordinates of the vertices
not present in S. Since the sets S and S� both have sizes
less than N, the functions fC can be calculated recursively,
starting from all N sets of size one (for which fQ ¼
fC ¼ 1), then all NðN � 1Þ=2 sets fijg of size two (for
which fQ ¼ fðrijÞ þ 1 and fC ¼ fðrijÞ), and continuing

the recursion up to size N. Overall, this requires of order
3N mathematical operations and 2N storage.
Finally, from fC another recursive procedure is used to

remove all the articulated (connected but not biconnected)
diagram integrals (such as Fig. 1(d)), whose sum is called
fA, to leave the required function fB. The function fA is a
sum of functions fA;v, which are defined as the sum of all

articulated diagram integrals with an articulation point at
v (i.e., connected graphs which can be disconnected by
removing vertex v), and with no articulation points at
vertices numbered lower than v. All diagram integrals
contained in fA;v can be expressed uniquely as the product

of a two diagrams. The first is a connected diagram on a
proper subset S (size 2 to N � 1) of the vertices, which
contains both v and the lowest-numbered vertex excluding
v, and which does not have an articulation point at v or at
any lower-numbered vertices. The second is a connected
diagram on S� [ v (the complement of S plus the vertex v),
which does not have an articulation point at a lower-
numbered vertex than v. Therefore,

fA;vðrNÞ ¼
X
S

fB;vðSÞðfB;vðS� [ vÞ þ fA;vðS� [ vÞÞ; (6)

where fB;v is the sum of all connected diagram integrals

which do not have an articulation point at v or at any lower-
numbered vertices. The function fB;v can easily be

obtained from fA;v; for example, in the final step of the

recursion,

fB;1ðrNÞ ¼ fCðrNÞ � fA;1ðrNÞ (7)

and for all v, 0< v< N,

fB;vþ1ðrNÞ ¼ fB;vðrNÞ � fA;vþ1ðrNÞ: (8)

Overall, this recursion requires of order 3NN mathematical
operations and 2NN storage, but the evaluation of equation
(6), which is the only step scaling as 3NN, can be imple-
mented in an efficient manner, such that the time scaling in
practice appears to be no slower than 3N for the values ofN
considered here.
Results.—The inverse twelfth-power potential U=" ¼

ð�=rÞ12 is a commonly-used soft sphere potential, which
approximately represents short-ranged repulsion between
atoms and molecules. The temperature scaling of the virial
coefficients is trivial for inverse power potentials, and each
virial coefficient can be calculated as a single reduced
value in units of�" and�. Hence, for simplicity, a reduced
interaction energy and separation can be used, with �U ¼
r�12. The Mayer f function is negative; it is close to –1 for

(a) (b)

(c) (d)

FIG. 1. Examples of graphs for N ¼ 6. Graphs (a) and (b) are
biconnected, (c) is disconnected, and (d) is articulated.
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small r, increases quickly around r ¼ 1, and approaches
zero with an asymptotic behavior of �r�12 for large r.

The integrations to give the virial coefficients are done
numerically, and the behavior of the Mayer f function
motivates the use of a Monte Carlo integration scheme
where interparticle distances are chosen based on a con-
tinuous, normalized probability function P ¼ ð9=4Þr2 for
r � 1 and P ¼ ð9=4Þr�10 for r > 1. This includes the
Jacobian factor of r2 for a three-dimensional system.
Particle 1 is fixed, then particle 2 is placed relative to 1
by choosing r12 randomly according to this probability
function, and choosing a random orientation for the r12
vector. The remainder of the particles, v ¼ 3 to N, are
similarly placed relative to the previous particle v� 1.
Once all N particles have been placed, the function fB is
calculated using the recursive scheme described above.

The integral of fB is defined as a weighted sum over
functions fB calculated for a large number n of these
N-particle configurations. In principle,

BN � 1� N

N!

Xn
i¼1

ðfBðrNÞ=PðrNÞÞ; (9)

where PðrNÞ is the product of all N � 1 probability func-
tions for the interparticle distances, but this equation can-
not be used in practice, as it is possible to have a diagram
with significant fB and very small P (such as a regular
polygon with sides of unit length where the adjacent
vertices are not sequentially numbered). Instead, for a
1-component system the permutation symmetry of fB is
used. The total probability of obtaining a particular
N-particle configuration with any of the possible N! label-
ings of the particles is given by PðrNÞ averaged over all N!
permutations of the particles, and this average is used as
the denominator in Eq. (9). The average over permutations
of the particles is calculated recursively for each random
configuration by considering chains of increasing length
from 2 to N.

For the inverse twelfth-power potential, the calculation
is numerically stable for almost all configurations, but
occasionally a situation is encountered where particles
are a long way apart, the average P is near zero, and fB
should also be near zero, but because of round-off errors

it acquires a value close to the numerical precision of
the computer (�10�14) and gives a significant contribution
to BN . In practice, this problem is avoided by setting all
values of jfBj below this threshold to zero and checking
that the choice of threshold does not affect the final result.
Its effect is found to be negligible with respect to the
quoted uncertainty in all results.
Results for the inverse twelfth-power potential are given

in Table I. They agree with previous calculations within
their standard errors, and improve on their precision. The
longest calculations, for B10, took approximately 440 h real
time when run in parallel on 100 CPU cores. In the case of
B5, the increased accuracy is simply a result of using more
sampling points, but for higher N the new calculation
method rapidly becomes more efficient. The efficiency of
the new method can be seen by comparing the computer
time required per Monte Carlo point (which increases by
about two orders of magnitude from N ¼ 5 to N ¼ 10) to
the number of diagrams contributing to the integrand at
each Monte Carlo point (which increases by about 6 orders
of magnitude over the same range). The results will be
valuable in constructing approximate equations of state for
the important inverse twelfth-power potential. This is the
‘‘hardest’’ inverse power potential for which negative virial
coefficients (here B8 and B9) are known in three dimen-
sions, and the data in Table I suggest that the higher virial
coefficients may oscillate around zero. Oscillations in the
signs of virial coefficients of increasing order have been
observed for other inverse power potentials [10], but it is
not known from the existing data whether the oscillations
will continue to infinite order, how they affect the conver-
gence of the virial series, and whether they reflect the
existence of poles in the complex plane.
The same sampling scheme and probability distribution

are used for hard spheres as for the inverse power potential;
each sphere is placed relative to the previous one in exactly
the same way as described above. More optimal sampling
schemes have been devised for N � 10 for hard spheres
[7], but the general-purpose sampling scheme used here
does not increase the uncertainty greatly (see Table II), and
it can be used without modification for N > 10. Since fB is
always an integer, there are no round-off problems in the

TABLE I. Reduced virial coefficients BN for the inverse twelfth-power potential. Standard
errors in the last 1–2 digits are in parentheses. The number of Monte Carlo points is n, the
relative computer time required per point is trel, and the relative number of biconnected graphs
not related by permutation symmetry is NðGÞrel. Literature values are from [10] (N ¼ 5) and
[11] (N > 5).

N 5 6 7 8 9 10

BN 2.11494(2) 0.76953(4) 0.09043(12) �0:0742ð6Þ �0:035ð3Þ 0.040(9)

n=1011 20 20 20 10 4 6

trel 1 2.3 5.4 13 35 97

NðGÞrel 1 5.6 47 710 19 000 970 000

Literature 2.1150(1) 0.7695(2) 0.0908(5) �0:074ð2Þ . . . . . .
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calculation for hard spheres. For hard spheres, fB is zero
for almost all of the random configurations, and the pro-
cedure can be made more efficient by identifying as many
zero values as possible without doing the full recursive
calculation of fB. A graph Gn is created for each configu-
ration n, with edges between all ij pairs with rij � 1

(hence f ¼ �1). No edge is present for pairs separated
by more than 1 (f ¼ 0). Then, if the graph Gn is not
biconnected, fB is zero. This is tested using a standard
Depth-First Search algorithm. However, even if graph Gn

is biconnected, fB is still zero in more than 90% of cases.
All biconnected graphs are therefore tested for the pres-
ence of a simple clique separator, which would cause fB to
be zero. A simple clique separator is defined as a single
vertex v connected by edges to m<N � 1 other vertices,
where all m vertices connected to v are also connected to
one another. [Figure 1(a) has a clique separator with
m¼2.] Graphs having clique separators with m¼2, 3, 4,
and 5 are identified and their values are set to zero, then fB
is calculated recursively for all remaining graphs. In prac-
tice, the remaining graphs are roughly equally divided
between zero and nonzero fB, so further efforts to screen
graphs for zero fB would give relatively little improvement
in computer time.

Tenth, eleventh, and twelfth reduced virial coefficients
for hard spheres with unit diameter are given in Table II.
Calculation of B12 took approximately 640 h real time
when run in parallel on 100 CPU cores. The efficiency of
the new method is again shown by the small increase in
computer time per point with increasing N, compared to
the rapid increase in the number of graphs. The tenth virial
coefficient agrees with more precise literature calculations,
the eleventh virial coefficient agrees well with estimates of

0.198, 0.203(2), and 0.202(2) obtained by extrapolating
lower-order virial coefficients ([7,12,13], respectively),
and the twelfth virial coefficient agrees reasonably well
with similar estimates [7,12,13] of 0.124, 0.128(3), and
0.128(3), respectively, given its relatively large uncertainty.
The current calculations therefore lend support to the
extrapolation techniques used in the literature.
The recursive method developed in this work is directly

applicable to any two-body potentials, to mixtures, and to
systems of different dimensionality such as hard disks. The
method may also be adapted for calculating correlation
functions. Extensions to non-pair-additive potentials
(using a formulation related to that of Hellmann and
Bich [14]), to flexible molecules, and to quantum statistics,
should also be considered.
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