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We construct a rigid-body~five-dimensional! potential-energy surface for the water–hydrogen
complex using scaled perturbation theory~SPT!. An analytic fit of this surface is obtained, and,
using this, two minima are found. The global minimum hasC2v symmetry, with the hydrogen
molecule acting as a proton donor to the oxygen atom on water. A local minimum withCs symmetry
has the hydrogen molecule acting as a proton acceptor to one of the hydrogen atoms on water, where
the OH bond and H2 are in a T-shaped configuration. The SPT global minimum is bound by
1097mEh (Eh'4.359 744310218 J). Our best estimate of the binding energy, from a complete
basis set extrapolation of coupled-cluster calculations, is 1076.1mEh . The fitted surface is used to
calculate the second cross virial coefficient over a wide temperature range~100–3000 K!. Three
complementary methods are used to quantify quantum statistical mechanical effects that become
significant at low temperatures. We compare our results with experimental data, which are available
over a smaller temperature range~230–700 K!. Generally good agreement is found, but the
experimental data are subject to larger uncertainties. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630960#

I. INTRODUCTION

A detailed understanding of the thermodynamic proper-
ties of gas mixtures containing water is desirable for a num-
ber of reasons. The most important systems are moist air,
where data can be used by industry and, perhaps more im-
portantly, for metrology~e.g., for humidity standards!, and
combustion gases, such as from combustion turbines in the
power industry. In these systems, the species whose interac-
tions with H2O need to be better understood are primarily
linear molecules such as N2, O2 , and CO2.

In previous work, we developed accurate intermolecular
potential-energy surfaces for water with helium1 and with
neon and argon.2 This work demonstrated the ability of
scaled perturbation theory to produce quantitatively accurate
pair potentials with a reasonable computational effort. The
resulting intermolecular potentials were used to compute
temperature-dependent second cross virial coefficients
B12(T) that have smaller uncertainties and cover a much
wider temperature range than the values produced by experi-
ment. This enables improved calculation of the thermody-
namic properties of gaseous mixtures containing water.
However, the monatomic gases considered previously are of

limited practical importance. In this work, we take a further
step toward the systems of greater interest by developing a
potential-energy surface for the H2O¯H2 dimer. While we
primarily view this system as a simpler~because of its fewer
electrons! starting point from which to proceed to additional
diatomic gases, vapor-phase mixtures of water and hydrogen
are of some interest in their own right for certain types of
fuel cells.3 In addition, a recent review ofB12 data for aque-
ous systems4 specifically mentions the water–hydrogen sys-
tem as one where better data are needed.

A number ofab initio studies on this system have been
reported. These generally agree that the anisotropy of the
potential-energy surface is dominated by the interaction of
the permanent molecular electric multipole moments, and
that this leads to two minima: one where the hydrogen mol-
ecule approaches the water molecule parallel to itsC2v axis,
and on the oxygen side of the molecule; the other with the
hydrogen molecule perpendicular to the plane of the water
molecule, and forming a T-shaped configuration with an OH
bond. The global minimum is theC2v structure, with previ-
ous binding energies estimated in a range approximately
spanning 700– 1000mEh (Eh'4.359 744310218 J). One of
the earlier studies, that by Schwenkeet al.,5 yielded one of
the largest binding energies~about 950mEh), using a com-
plete active space, self-consistent field~CASSCF! plus aver-
aged coupled pair functional~ACPF! methodology, with a
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@5s4p2d1 f /4s2p1d# basis set. The counterpoise correction
procedure~CP! of Boys and Bernardi6 was not applied, as
the basis set superposition error~BSSE! was estimated to be
small for the high-energy regions of the potential-energy sur-
face of interest. However, the BSSE was reported to be about
0.1 kcal/mol~about 150mEh), near the van der Waals mini-
mum, i.e., a significant fraction of the binding energy. Zhang
et al.7 used fourth-order Møller–Plesset perturbation theory
to study the anisotropy of the potential-energy surface, and
estimated the binding energy to be about 899mEh . A some-
what smaller estimate of about 738mEh was obtained by
Balasubramanianet al.8 at the CEPA~1! ~coupled electron
pair approximation! level of theory, whereas a fourth-order
Møller–Plesset study by Phillipset al.9 yielded a binding
energy of about 916mEh , similar to the Zhanget al. value
quoted above. A high-resolution mid-infrared observation of
H2O¯H2 has recently been reported,10 and it was concluded
that large-amplitude motion occurs in this complex. Given a
global potential energy surface that accurately describes this
large-amplitude motion, it is possible to perform converged
statistical mechanical sampling to obtain experimentally
measurable quantities such as the second virial coefficient.
Due to the light mass of the hydrogens in the system, one
expects quantum statistical mechanical effects to become
significant as the temperature is lowered. In the current work,
we will determine the range of validity of approximate treat-
ments of these effects. The structure of the rest of the paper
is as follows: In Sec. II, we discuss the methods used to
calculate and fit an analytic potential-energy surface for
H2O¯H2, and the methods used to calculate the second
virial coefficient. In Sec. III, we examine the form of the
potential-energy surface, identifying important stationary
points, and compare the second virial coefficient calculated
from experimental data with that calculated from the fitted
potential-energy surface. The conclusions from this work are
drawn in Sec. IV.

II. METHODS

A. Coordinate system

The coordinate system used for H2O¯H2 is shown in
Fig. 1. The H2O molecule lies in thexz plane, with the origin
at the oxygen atom, and the hydrogen atoms havez,0. The
H2 center-of-mass location is defined by the spherical polar
coordinates,R, u, and f, and the orientation of H2 by the
spherical polar angles,u8 andf8. The OH bond length and
HOH bond angle are those recommended by Mas and
Szalewicz,11 i.e., r OH51.8361a0 (a0'0.052 917 72 nm)
and /HOH5104.69°; the H2 bond length is r HH

51.449a0 . These bond angles and bond lengths correspond
to the molecules in their vibrational ground states. The H2O
geometry from Ref. 11 is derived from calculations, and the
H2 bond length is the experimentally determined value.

The angular coordinates are sampled using 256 entries in
a four-dimensional Sobol sequence12 in cosu, f, cosu8, and
f8 over the range@0,p# for u, u8, andf8, and@0,p/2# for f.
The values ofR sampled are 4, 5, 6, 7, 8, and 12a0 , result-
ing in a total of 1536 points on the potential-energy surface.

B. Basis sets and ab initio calculations

We use modified versions of the augmented correlation-
consistent (aug-cc-pVXZ) basis sets of Dunning and
co-workers.13,14 These ‘‘shifted polarization’’~SP! variants
are described elsewhere,2,15,16 and involve shifting the
Gaussian exponents of higher polarization functions~i.e., d
and higher for hydrogen;f and higher for oxygen! to match
the set of exponents of the polarization functions with lowest
orbital angular momentum~i.e., p for hydrogen, andd for
oxygen!. This procedure has been shown to lead to improved
dispersion-energy coefficients, and hence is useful for calcu-
lations on weakly bound systems. For the rest of this article,
we refer to the aug-cc-pVXZ basis sets as AVXZ and the SP
variants as SP-AVXZ.

The MOLPRO package17,18 is used to perform supermol-
ecule calculations, and the methods used are Hartree–Fock
self-consistent field~SCF!, second-order Møller–Plesset
theory ~MP2!, and coupled cluster with single, double and
perturbative triple substitutions@CCSD~T!#. Spherical basis
functions, and the full counterpoise correction procedure of
Boys and Bernardi6 are used throughout.

Monomer charge densities for H2O and H2 are obtained
with the SP-AVQZ basis sets at the SCF, MP2 and quadratic
configuration interaction with single and double substitutions
~QCISD! levels of theory. For the post-Hartree–Fock meth-
ods, the oxygen 1s orbital is frozen.

C. Scaled perturbation theory

At each point on the potential-energy surface described
in Sec. II A, we calculate contributions to the interaction en-
ergy using the SP-AVQZ basis set. The contributions that

FIG. 1. Coordinate system used to describe the H2O¯H2 complex. The
origin is at the oxygen atom,R, u, andf specify the H2 center of mass,u8
andf8 the H2 orientation.
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we include are first-order exchange-repulsion, first-order
Coulomb, induction, dispersion, exchange-induction and
exchange-dispersion,

DEint5Eexch1ECoul1Eind1Edisp1Eexch-ind1Eexch-disp. ~1!

The framework we use is scaled perturbation theory~SPT!,
where, for some of the terms, the effects of intramolecular
electron correlation effects are treated only approximately.
This can be compared with the symmetry-adapted perturba-
tion theory ~SAPT! approach,19 where, for each term, in-
tramolecular electron correlation effects can be explicitly
calculated, though with much greater computational expense.
We now describe how we calculate the contributions to Eq.
~1! term by term.

1. Exchange-repulsion energies

First-order exchange-repulsion energies are obtained
from Heitler–London~HL! calculations, and intramolecular
electron correlation effects are approximated using the fol-
lowing expression:

Eexch
corr'Eexch

HL 3
Sr

corr

Sr
SCF, ~2!

where theSr are the electronic charge-density overlap inte-
grals, and ‘‘corr’’ represents a correlated level of theory.
Equation~2! is based on the observation that the ratio of the
exchange-repulsion and charge-density overlap integrals is
insensitive to the level of theory at which it is calculated.
This was first demonstrated for SCF and MP2 calculations
for the water dimer,20 and later for SCF and full configura-
tion interaction~FCI! calculations for the helium dimer.15

Here we introduce correlation effects by scaling the HL
exchange-repulsion energies by the ratio of QCISD and SCF
charge-density overlap integrals.

2. Coulomb energies

First-order Coulomb energies are calculated directly us-
ing the monomer charge densities obtained at the QCISD
level of theory, using the SP-AVQZ basis sets,

ECoul
QCISD5E rA

QCISD~rA!rB
QCISD~rB!r AB

21drAdrB , ~3!

whereA andB represent H2O and H2.

3. Induction energies

Second-order coupled Hartree–Fock~CHF! induction
energies are calculated directly, and scaled isotropically as
follows. The long-range induction energy of H2O is propor-
tional to the product of the dipole polarizability~a! of H2O
and the square of the quadrupole moment~Q! of H2 ; the
long-range induction energy of H2 is proportional to the
product of the dipole polarizability of H2 and the square of
the dipole moment~m! of H2O. SCF/SP-AVQZ values of
a(H2O), a(H2), Q(H2), and m(H2O) are calculated, and
the induction energies scaled using the ratio of accurate val-
ues from the literature and the SCF quantities, i.e.,

Eind~H2O!5Eind
CHF~H2O!3

@Q~H2!2
•a~H2O!# lit

@Q~H2!2
•a~H2O!#SCF

, ~4!

Eind~H2!5Eind
CHF~H2!3

@m~H2O!2
•a~H2!# lit

@m~H2O!2
•a~H2!#SCF

. ~5!

The accurate polarizabilities are calculated from dipole os-
cillator strength distribution~DOSD! data,21 Q(H2) is taken
from the work of Poll and Wolniewicz,22 andm(H2O) from
the CRC handbook.23 This leads to scaling factors of 0.9409
and 0.8648 for the H2O and H2 induction energies, respec-
tively.

4. Dispersion energies

Second-order time-dependent coupled Hartree–Fock
~TDCHF! dispersion energies are calculated directly. The
isotropic value ofC6 at this level of theory using the SP-
AVQZ basis set is 22.0981Eh a0

6, and the accurate DOSD
value21 is 23.21Eh a0

6. Hence, we scale the TDCHF results
isotropically by 1.050. The isotropic values ofC6 for the
AVQZ and SP-AVQZ basis sets agree to within about 0.1%
~both values being close to the Hartree–Fock limit!, but the
differences for the higherCN , which make significant con-
tributions to the interaction energies, are more marked: the
SP-AVQZ values ofC8 , C10, and C12 are larger than the
AVQZ values by about 4.2%, 20%, and 58%, respectively.

5. Exchange-induction energies

Exchange-induction energies are estimated by assuming
the following breakdown of the SCF interaction energy:

DESCF'DEHL1Eind
CHF1Eexch-ind

SCF , ~6!

whereDEHL is the sum of the first-order exchange-repulsion
and Coulomb contributions,Eind

CHF the coupled Hartree–Fock
induction energy, andEexch-ind

SCF the exchange-induction energy
at the SCF level of theory. The exchange-induction contribu-
tion that we include in the total interaction energy@i.e., Eq.
~1!# is an approximation of the MP2 contribution, and is
obtained by scaling the SCF values by the ratio of MP2 and
SCF charge-density overlap integrals. Hence we assume that
intramolecular electron correlation effects can be incorpo-
rated into second-order exchange contributions in the same
manner as for the first-order exchange@see Eq.~2!#.

6. Exchange-dispersion energies

Like the exchange-induction energies, the exchange-
dispersion energies are not calculated directly, but are esti-
mated from supermolecule calculations, in this case at the
MP2 level of theory. We use the following decomposition of
the MP2 interaction energy:

DEMP2'Eexch
MP21ECoul

MP21Eind
MP2

1Edisp
UCHF1Eexch-ind

MP2 1Eexch-disp
MP2 . ~7!

To obtain Eexch-disp
MP2 , which is used directly in Eq.~1!, the

exchange-repulsion energy is scaled according to Eq.~2!,
and the Coulomb energy is calculated directly from the MP2
monomer charge densities. The induction energy is the sum
of the CHF components scaled by the ratio of the appropriate
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monomer MP2 and SCF dipole polarizabilities. The un-
coupled Hartree–Fock~UCHF! dispersion is a component of
MP2 supermolecule interaction energies, and is calculated
separately. The approximate MP2 exchange-induction ener-
gies are those described above.

7. Total interaction energies

To summarize, the total scaled perturbation theory inter-
action energies are composed of first-order exchange and
Coulomb contributions at the QCISD level of theory, CHF
induction, and TDCHF dispersion contributions scaled using
monomer properties to give accurate asymptotic~multipolar!
behavior, and second-order exchange-induction and
exchange-dispersion at approximately the MP2 level of
theory.

D. Fitting the potential-energy surface

The fitted H2O¯H2 potential is given by the function

(
ab

(
i

(
jkl

Cab,i
jkl ~r ab!

2 i~d1! j~d2!k~d3! l . ~8!

Here,a represents the five sites Hw , Hw8 , O, X, and X8 on
the water molecule, andb represents the three sites H, H8,
and Y on the hydrogen molecule. Sites X and X8 are in the
plane of the H2O molecule at 1a0 from the O nucleus and at
half the tetrahedral angle (54.736°) from the water symme-
try axis on the other side of the molecule from the hydro-
gens. Site Y is the center of the hydrogen molecule.r ab is the
distance from sitea to site b, d1 is the direction cosineẑA

•R̂, d2 is the direction cosineẑB•R̂, d3 is the direction cosine
ẑA• ẑB . The unit vectorẑA points from the O atom along the
water symmetry axis towards the center of the X and X8

sites, the unit vectorR̂ points from O to Y, and the unit
vectorẑB points along the H2 axis from H8 to H. The fit uses
60 independent parameters, and minimizes the Boltzmann-
weighted error,

W25(
g

wg3~Efit~g!2Ecalc~g!!2Y (
g

wg , ~9!

whereg represents the geometries,Efit is the fitted function,
Ecalc is the calculated energy and the weights are given by

wg5exp@2~Ecalc~g!2E0!/Ed#, ~10!

whereEd53 mEh ~about 950 K!, andE0521000mEh . The
weighting parameterEd is chosen to ensure that repulsive
configurations, accessible at the higher temperatures that we
wish to consider, are given adequate weights in the fit, and
will be represented accurately. The total weight for the fit is
884, and the error isW'9 mEh . The parameters for the
fitted potential-energy function and a FORTRAN subroutine
to evaluate it are available as supplementary material via
EPAPS.24

E. Second virial coefficients

1. Classical and semiclassical calculations

The classical component of the second virial coefficient
is evaluated as the integral of the Mayer function over all
space,

Bclass~T!52
1

2 E ^exp~2U12/kBT!21&V1 ,V2
dR, ~11!

whereU12 is the pair potential and̂̄ &V1 ,V2
represents av-

eraging over all molecular orientations. Quantum effects can
be introduced by using a semiclassical expansion in orders of
\2 ~see e.g., Gray and Gubbins25! and first-order translational
and rotational corrections are given by

BQM
trans~T!5

\2

24~kBT!3 3
^F2&0

2M r
, ~12!

BQM
rot ~T!5

\2

24~kBT!3 3 (
a5x,y,z

^Ta
2&0

I a
, ~13!

whereF is the force on each molecule,M r is the reduced
mass of the system, andTa is the torque about the local
molecular axisa with moment of inertiaI a . The ^¯&0 no-
tation represents integration weighted according to the zero-
density pair distribution function. The rotational correction
for this mixed system is the average of the two fragment
contributions. The total first-order quantum-corrected second
virial coefficient,BQM

(1) (T), is defined as the sum of the con-
tributions from Eqs.~11! to ~13!.

2. Path-integral calculations

An approach that uses the Feynman path-integral for-
malism for a fully quantum mechanical treatment of the sec-
ond virial coefficient was introduced by Diep and Johnson.26

In the current work, we follow the procedures that were
shown to be successful in the calculation of the water–water
second virial coefficient.27 The expression for the quantum
statistical mechanical second virial coefficient,BQM(T), may
be written as26,27

BQM~T!52
1

2 E dR

3K expS 2E
0

\b

dtU@r1~t!,r2~t!,V1~t!,

3V2~t!#/\ D 21L
c

(0)

, ~14!

where the centroid constrained average,^¯&c
(0) , is given by

Feynman integration over periodic pathsr i(t1\b)5r i(t)
and V i(t1\b)5V i(t). Here,b51/kBT and R5r1c2r2c,
where

^¯&c
(0)5

1

rc
(0) E D@r1~t!#D@r2~t!#D@V1~t!#D@V2~t!#

3exp~2S0 /\!¯dS r1c2E
0

\b dt

\b
r1~t! D

3dS r2c2E
0

\b dt

\b
r2~t! D ~15!

and the centroid density
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rc
(0)5E D@r1~t!#D@r2~t!#D@V1~t!#D@V2~t!#

3exp~2S0 /\!dS r1c2E
0

\b dt

\b
r1~t! D

3dS r2c2E
0

\b dt

\b
r2~t! D . ~16!

The free Euclidian action,S0 , is given by

S05E
0

\b

dt(
i 51

2 F1

2
Mi ṙ i

2~t!1
1

2
v i~t!•I iv i~t!G , ~17!

whereMi is the total mass andI i is the moment of inertia of
each molecule,v i(t) is the angular velocity corresponding
to dynamics in imaginary time,t, andṙ i(t)5dr i(t)/dt. De-
tails of implementation and explicit expressions are given in
Ref. 27.

3. Effective potential calculations

It was shown in previous work27 that, for the case of the
water–water interaction, an improved estimate of the second
virial coefficient when compared with the first-order results
of Eqs.~12! and~13! may be obtained from the semiclassical
effective potential,

U12
(sc)5U121

\2b2

24 (
i 51

2 F F i
2

Mi
1 (

a5x,y,z

Ta i
2

I a i
G , ~18!

that replacesU12 in the classical expression to give

BQM
(sc)~T!52

1

2 E ^exp~2U12
(sc)/kBT!21&V1 ,V2

dR. ~19!

BQM
(sc) andBQM

(1) are equal to order\2. In the sections to fol-
low, we will compare results obtained from theBQM

(sc) , BQM
(1)

and the fullBQM expressions to obtain a consistent under-
standing of the low-temperature behavior of the second virial
coefficient.

III. RESULTS

A. The potential-energy surface

We first examine the potential-energy surface by looking
at a two-dimensional cut through it where, for values ofu
andf, we find the values ofu8, f8, andR that minimize the
potential energy. This surface is shown in Fig. 2, and gives
the energy of the optimal position of H2 for each line of
approach towards H2O. The global minimum, labeled (a),
has H2 on the oxygen side of H2O, with the bond parallel to
the C2v axis ~i.e., u5u850°); R is about 5.67a0 , and the
interaction energy is very close to21100mEh , a value
somewhat larger than estimated in previous studies.5,7–9 The
most significant improvement here is likely to be in the de-
scription of the dispersion interaction. In fact, the potential-
energy surface is quite flat, and quite isotropic with respect
to f, at smallu, such that the region within 100mEh of the
global minimum extends to aboutu575° atf50°, and to
aboutu560° atf590°. A local minimum, labeled (b), has
u'120° andf50°, i.e., the H2 center of mass almost along
the OH bond direction; the H2 bond is perpendicular to the
plane containing the H2O molecule (u85f8590°). This
T-shaped configuration of the OH bond and the H2 molecule
has also been identified as a local minimum in previous stud-
ies ~see above!. The least favorable line of approach on the
two-dimensional surface, labeled (c), has the H2 center of

FIG. 2. Two-dimensional cut through the H2O¯H2 potential-energy sur-
face. For each pair ofu andf values, the energy is minimized with respect
to R, u8 andf8. The contours are given inmEh .

FIG. 3. Selected orientations of the H2O¯H2 complex for which cuts
through the potential-energy surface, varying onlyR, are studied.
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mass on the H2O C2v axis on the hydrogen side of H2O, and
the H2 orientation is the same as for (b); its minimum inter-
action energy is about2640 mEh , at R'6.21a0 .

The orientations corresponding to the labeled stationary
points are shown in Fig. 3, along with a fourth, labeled (d),
which differs from (c) only in the H2 orientation (u8
50°). We show one-dimensional cuts~varying R, with all
angular coordinates fixed! through the potential-energy sur-
face in Fig. 4. The cuts are constructed by fitting a suitable
functional form,

Eint'exp@2a~R2r!2b~R2r!2#2 (
n54,6,8

Cn

Rn , ~20!

to discrete data, and these are shown for the energetically
most and least favorable points on the two-dimensional sur-
face discussed above@(a) and (c), respectively#, and the
orientation (d), where the interaction energy is always posi-
tive. The SPT curves are deeper than the corresponding
CCSD~T!/SP-AVQZ ones for (a) and (c), and this reflects
the fact that the scaling of the dispersion contribution, which
is the major attractive part of the interaction energy, leads to
a better description of this component than that recovered at
the CCSD~T!/SP-AVQZ level of theory. The positions of the
SPT minima are consequently at slightly smaller values ofR
@about 0.04, 0.07, and 0.08a0 for (a), (c), and (d), respec-
tively# relative to the CCSD~T! values. We omit results for
(b) here, since this cut is quite similar to (a); cut (d) is

included to illustrate that the SPT model is capable of accu-
rately describing regions of the potential-energy surface that
are not strongly bound.

We present a breakdown of the interaction energy com-
ponents from Eq.~1! for orientations (a), (c), and (d) at
their optimal values ofR, determined by minimizing Eq.
~20!, in Table I. The first-order Coulomb term is expected to
be significantly more anisotropic than the dispersion term,
and hence is expected to govern the relative stability of dif-
ferent molecular orientations~cf., the Buckingham–Fowler
model28!. The leading multipolar dipole-quadrupole term is
given by29

mAQB

4p«0R4 •
3

2
@cosuA~3 cos2 uB21!2sinuA sin 2uB cosw#,

~21!

wherew5wA2wB , anduA , uB , wA andwB are Euler angles
for moleculesA andB with their centers of mass at Cartesian
coordinates~0, 0, 0! and~0, 0, R). The angular factors from
Eq. ~21! are 3, 3/2, and23 for orientations (a), (c), and
(d), respectively. At the global minimum, the relative
dipole–quadrupole orientations are optimal, and the first-
order Coulomb and dispersion terms contribute similar
amounts to the attractive part of the interaction; the induction
and exchange-induction terms are somewhat less important,
with a combined contribution of about 13% to the sum of the
attractive interactions. The first-order exchange contributes
nearly 90% of the total repulsive interaction, with the rest
coming from the exchange-dispersion term. For (c), the
dipole–quadrupole interaction is less favorable, and the dis-
persion term is the dominant attractive force, being about
30% larger in magnitude than the first-order Coulomb con-
tribution. The induction energy contributes roughly the same
proportion to the total attractive interaction as for (a), but
the second-order exchange terms are much less significant,
since the optimum valueR is somewhat larger for (c), and
these terms decay approximately exponentially. For (d), the
first-order Coulomb term is large and positive, as expected
from the above considerations, and at the shallow minimum,
the interaction energy is about 14mEh .

1. Complete basis set limit extrapolation

To estimate the binding energy at the complete basis set
~CBS! limit, we use the two-point extrapolation method of
Halkier et al.30 Interaction energies are calculated at the
CCSD~T!/AVQZ and CCSD~T!/AV5Z levels of theory for
orientation (a), which includes the global minimum~see
Fig. 3!, and a CCSD~T!/CBS estimate of the one-
dimensional cut through the surface is obtained. An analytic

FIG. 4. Comparison of SPT and CCSD~T!/SP-AVQZ slices through the
H2O¯H2 potential-energy surface. The configurations labeled (a), (c), and
(d) are shown in Fig. 3.

TABLE I. Minimum-energy positions, and breakdown of interaction energies into components, for the station-
ary points described in the text; see Eq.~1! and Fig. 3. The optimum separation,Rmin , is given ina0 , and the
energies inmEh .

Label Rmin Int Exch Coul Ind Disp Exch-ind Exch-disp

a 5.67 21096.8 1574.9 21337.6 2257.7 21149.7 2126.6 199.8
c 6.23 2646.2 912.8 2642.9 2131.1 2818.4 8.2 25.3
d 7.22 13.9 216.6 249.3 263.1 2384.9 23.5 20.3
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fit of this cut is made using Eq.~20!, and this yields an
estimated CCSD~T!/CBS binding energy of 1076.1mEh ,
with Rmin55.68a0 . This is about 1% larger than the
CCSD~T!/AV5Z binding energy, which is 1063.0mEh

(Rmin55.69a0), and about 2% smaller than the SPT value.

2. Effect of H 2 bond length

The rotational temperature of H2 is about 85 K, so at the
higher limit of the temperature range of interest here (T
'2000 K), a significant number of rotational states will be
occupied. The vibrational temperature of H2 is about 6000 K,
so in contrast, only the ground vibrational state will have a
significant population.

We calculate the H2 potential-energy curve at the FCI
level of theory using an aug-cc-pV6Z basis set, for 0.5
<RHH<3.0 a0 , and fit an analytic function to accurately
represent these data. We then solve the one-dimensional
nuclear Schro¨dinger equation using the Fourier Grid Hamil-
tonian method,31 for a number of rotational energy levels,
labeledJ. This is done by adding the centrifugal potential,

Vrot~RHH!5\2J~J11!/~2M rRHH
2 !, ~22!

to the fitted function. Here,M r is the reduced mass, calcu-
lated from the mass of the hydrogen atom~1.00794 atomic
mass units!. For J50, the expectation value ofRHH for the
vibrational ground state is 1.4486a0 , in agreement with the
reported experimental value of 1.449a0 . The expectation
value of the quadrupole moment is 0.482764 a.u., which can
be compared with the accurate Poll and Wolniewicz22 value
of 0.483 535 a.u. The expectation value of the polarizability
is 5.411 953 a.u., in good agreement with the DOSD value of
5.427 922 a.u.,21 and the accurate value calculated by
Rychlewski32 of 5.417 04 a.u.

At 1000 K, the Boltzmann-weighted average over the
populated rotational states of the expectation value ofRHH is
1.4634a0 , i.e., 1.0% larger than the value at 0 K. At 2000 K,
this is increased to 1.4756a0 , i.e., 1.9% larger. The quadru-
pole moment is larger relative to the rotational ground state
value by 1.6% and 3.0% at 1000 and 2000 K, respectively,
whereas the corresponding increases for the polarizability are
1.2% and 2.2%. TheC2v minimum at the CCSD~T!/SP-
AVQZ level of theory with RHH51.463a0 has a binding
energy of 1062mEh , compared to 1047mEh for RHH

51.449a0 . Hence, the correction to the binding energy at
1000 K associated with the stretched H2 bond is about half
the size of that associated with using a finite basis set~see
above!.

A similar calculation for H2O would be quite complex.
However, it seems likely that the effect of the rotation of
H2O on the pair potential would be small based on the fact
that measured dipole moments for H2O in higher rotational
states up toJ56 ~Ref. 33! differ by less than 1% from the
dipole moment in the ground state.34

The corrections associated with using a finite basis set,
and the H2 stretching, increase the binding energy of the
H2O¯H2 complex relative to the CCSD~T!/SP-AVQZ value
corresponding to 0 K. Taking these into account, we estimate
that the SPT method is in error by no more than 5%, placing
the binding energy in the range of about 1050– 1150mEh .

We use this assessment of the accuracy of the SPT method to
estimate uncertainties in the calculated values ofB12(T) be-
low.

B. Second virial coefficients

1. Experiment

B12 may be obtained from measurements of the H2O
mole fraction in hydrogen gas equilibrated with ice35,36 or
with liquid water.37,38 The procedures for derivingB12 from
these data and estimating its uncertainty have been described
previously;1,2 the results are given in Table II. The uncertain-
ties in Table II~standard uncertainty with coverage factor 2!
reflect only the measurement of water content in the gas
phase; additional factors such as neglect of higher virial co-
efficients are not included. The solubility of hydrogen in liq-
uid water is calculated from the Henry’s constants recom-
mended in Young39 for the data of Kosyakovet al.;37 for the
data of Gillespie and Wilson,38 the measured coexisting liq-
uid compositions are used.

Sewardet al.40 made volumetric measurements of sev-
eral H2O¯H2 mixtures at high temperatures. They reported
mixture second virial coefficients,Bm, which are rigorously
related to the pure-component and cross virial coefficients by

Bm5x1
2B1112x1x2B121x2

2B22, ~23!

wherex is the mole fraction and subscripts 1 and 2 represent
water and hydrogen, respectively.

At each experimental composition, the measuredBm can
be combined with known values ofB11 andB22 to yield B12.
Unfortunately, this produces values ofB12 with much scatter,
especially at the ends of the composition range. This is not
surprising; Eubank and Hall41 have shown that~for equal
uncertainties inB11 and B22, which is approximately the
case here! an equimolar mixture produces the most reliable
values ofB12 from Eq. ~23!, with the uncertainty growing at
more asymmetric compositions. We therefore average only

TABLE II. H 2O¯H2 second virial coefficients derived from experimental
data. Temperatures are given in K,B12 and their uncertaintiesDB12 in
cm3 mol21.

T B12 DB12 Reference

233.16 247.8 75.1 36
243.16 251.9 27.4 36
243.16 20.2 48.4 35
253.15 213.2 15.4 36
253.15 21.7 18.3 35
263.15 215.1 14.2 36
263.15 23.2 10.9 35
271.15 23.7 14.1 35
273.15 230.0 14.7 36
283.16 264.7 9.3 37
293.16 268.0 10.0 37
310.92 210.6 5.3 38
366.46 2.1 6.2 38
422.00 9.4 8.9 38
477.55 11.5 16.0 38
653.15 4.0 12.8 40
673.15 2.9 15.8 40
693.15 1.7 10.1 40
713.15 1.1 10.7 40
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the values forx250.25, 0.4, 0.6, and 0.8, with the 0.4 and
0.6 compositions given double weight. The results are given
in Table II, where the uncertainties reflect the scatter of val-
ues obtained at different compositions.

Finally, vapor-phase enthalpy-of-mixing data can, when
extrapolated to low pressure, yieldf125B122T(dB12/dT).
At temperatures from approximately 373 to 423 K, values of
f12 were reported by Smithet al.42 and later reanalyzed by
Wormald and Lancaster.43 In Table III, we give the values
from their reanalysis, along with their reported uncertainties.

At higher temperatures and pressures, excess enthalpies
for water–hydrogen mixtures were reported by Lancaster
and Wormald,44 superseding earlier measurements.45 As de-
scribed previously for the water–argon system,2 we extrapo-
late these data to zero pressure in order to extractf12. Those
values are also given in Table III. As was the case for water–
argon, the uncertainties in these values off12 result prima-
rily from our estimate of the uncertainty in the zero-pressure
extrapolation.

In the calculations described in this section,B(T) for
pure hydrogen is required. Since no precise representation
existed, we fit an equation to the data of Michelset al.,46

which extend to approximately 423 K. Above that tempera-
ture, we use values ofB(T) calculated from the correctedab
initio potential of Diep and Johnson.26,47The resulting equa-
tion is

B~T!5(
i 51

4

ci~T* !di, ~24!

whereT* 5T/100 K, B and theci have units of cm3 mol21,
and the values ofci anddi are given in Table IV.

B(T) for pure water is also required. In previous work,1,2

we used the correlation of Hill and McMillan48 for this pur-
pose. However, the upper temperature limit of this correla-
tion is only 573 K, not high enough for the data of Seward
et al.40 or for some of the data of Lancaster and Wormald.44

We therefore use a new correlation49 that covers the entire
temperature range required. The effect of changing theB(T)

correlation for water is always much less than the overall
uncertainty in the data for bothB12 in Table II andf12 in
Table III.50

2. Theory

The classical, first-order semiclassical, effective-
potential, and path-integral results forB12(T) have been cal-
culated using the fitted SPT potential-energy surface. For
Eqs.~11!–~13! radial quadrature out to 45a0 with a step size
0.01a0 is used, and the angular degrees of freedom are
sampled using a Sobol sequence of 16 384~i.e., 214) entries.
We estimate that the errors due to the sampling are of the
order of 0.1 cm3 mol21 at 100 K and reduced to about
0.01 cm3 mol21 at 1000 K. Calculations are performed over
a temperature range of 100–3000 K.

To evaluate the exact quantum statistical mechanical ex-
pression for the second virial coefficient given by Eq.~14!,
we express the path in terms ofP discretizations. Details of
the explicit form of the discretization are contained in Ref.
27. Metropolis Monte Carlo sampling is carried out along a
mesh in the center-of-mass distance,R. Along this mesh, we
evaluate the effective Mayer function, exp(2Veff(R)/kBT)
21, or, equivalently, the effective potential,Veff(R). The ex-
act quantum statistical mechanical second virial coefficient is
given by

B~T!522pE
0

`

~exp~2Veff~R!/kBT!21!R2dR. ~25!

We consider four temperatures, 100, 150, 200 K, and 250 K.
For the temperatures of 200 and 250 K, we considerP55
andP510. No significant changes are observed when sam-
pling with the large discretization. For the temperatures of
100 and 150 K, we considerP510 andP520. Again, no
significant changes when compared to the statistical uncer-
tainties are observed when we sample with the larger dis-
cretization. For all temperatures, we sample 106 Monte Carlo
moves with a step inR of 0.05 nm over a range of 0.3 nm
<R<0.6 nm to recover the shape of the effective Mayer
function. In the important region of 0.3 nm<R<0.4 nm,
where the effective Mayer function has a peak, we perform
107 Monte Carlo moves with a step inR of 0.005 nm. By
collecting these results, we are able to create a smooth inter-
polation of the effective Mayer function by scaling our cal-
culation of the semiclassical effective potential. This allows
us to do the integration inR and obtain a consistent value for
B. We confirm that the error due to this fitting procedure is
insignificant compared to the statistical error of the Monte

TABLE III. Values of f125B122T(dB12 /dT) for H2O¯H2 derived from
vapor-phase enthalpy-of-mixing data. Temperatures are given in K,f12 and
their uncertaintiesDf12 in cm3 mol21.

T f12 Df12 Reference

373.17 235 12 43
378.17 225 19 43
383.17 211 17 43
393.17 28 13 43
403.17 216 18 43
413.17 22 8 43
423.16 27 15 43
448.2 235.3 61 44
473.2 225.7 51 44
498.2 238.8 31 44
523.2 12.7 21 44
548.2 35.2 19 44
573.2 39.7 15 44
598.2 24.3 11 44
648.2 14.8 11 44
698.2 7.8 17 44

TABLE IV. Parameters for an analytic approximation ofB(T) for H2 . The
ci are in cm3 mol21 and thedi are dimensionless. The analytic form is given
in Eq. ~24!.

i ci di

1 42.0803 20.33
2 2143.982 21.4
3 146.918 21.8
4 247.5601 22.2
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Carlo sampling. Error estimates are obtained by propagating
over the integration the statistical error from Monte Carlo
evaluation of the effective Mayer function.

Comparison ofB12 for the different computational meth-
ods is shown in Fig. 5. The first-order semiclassical results
are a reasonable approximation to the path-integral results at
higher temperatures; for example, at 250 K, the difference is
about 0.5 cm3 mol21, and the estimated uncertainty in the
path-integral result is about 0.2 cm3 mol21. However, close
to 100 K, the gradient of the first-order results is qualitatively
incorrect, andB12 increases at temperatures lower than this,
becoming large and positive by 50 K. Results from the vari-
ous methods of calculatingB12 are collected in Table V,
including the rotational and translational contributions from
the first-order approximation. Not surprisingly, the majority
of the first-order correction arises from the rotational terms,
in particular that associated with the motion of H2 , and this
method cannot be considered useful for this system at tem-
peratures lower than about 150 K. At 250 K, where the first-
order method is quite accurate, the sum of the rotational
terms is about twice as large as the translational contribution.
At temperatures below 150 K, the first-order expression fails
to recover the qualitative trend with temperature. The results
from the effective potential recover the qualitative trend, but
significant deviations from the exact converged path-integral
results still occur at 150 K. At temperatures above 200 K, the
methods become consistent with one another, and for tem-

peratures where experimental measurements have been
made, results obtained from the first-order expression are
appropriate.

An analytic fit is constructed to representB12(T). For
this purpose, the first-order perturbation results are used at
high temperatures, the effective potential results are used
from 250 to 500 K, and path-integral values are used at 100,
150, 200, and 250 K. The same expression used above for H2

@Eq. ~24!# is used; Table VI gives the fitted parameters.
Equation~24! can be differentiated with respect toT to yield
f12(T).

This fit is recommended for use from 200 to 2000 K; in
this range the errors in the fit are less than those associated
with the numerical evaluation ofB12(T). The fit is con-
strained to behave reasonably outside this temperature range,
but significant extrapolation is not recommended, especially
in the low-temperature direction. With the functional form of
Eq. ~24!, we were unable to fit the path-integral points at 100
and 150 K within their uncertainties, even with the addition
of more terms. This suggests that a different functional form
might be required to reproduce low-temperature values of
B(T) in systems with large quantum effects; we did not at-
tempt to find such a form in this work because of the lack of
practical interest in these lowest temperatures for this sys-
tem.

In Table VII, we list values ofB12 for the H2O¯H2

complex generated from Eq.~24! at specific temperatures
with the parameters given in Table VI. Table VII also gives
the uncertainties inB12; these are based on first-order calcu-
lations using SPT potentials with binding energies increased
and decreased by 5%~see Sec. III A!.

3. Comparison with experimental data

The best theoretical results~i.e., the fit using the param-
eters in Table VI! are compared with the experimental data

FIG. 5. A comparison of different theoretical methods used to calculate the
second virial coefficient of the H2O¯H2 complex.

TABLE V. Calculated second virial coefficients for H2O¯H2 . Classical, first-order quantum-corrected,
effective-potential, and path-integral results are shown, calculated with the fitted SPT potential-energy surface.
The translational and rotational components of the first-order results are shown, as are the estimated uncertain-
ties,s, in the path-integral results. The temperatures are given in K, and theB12 in cm3 mol21.

T Classical

First-order

Effective potential

Path integral

Total Rot.(H2O) Rot.(H2) Trans. Total s

100 2125.0 249.61 9.515 52.02 13.81 275.65 288.26 3.5
150 251.34 234.31 2.081 10.97 3.984 237.81 241.13 1.2
200 225.85 218.92 0.8124 4.140 1.986 219.96 220.91 0.42
250 213.17 29.472 0.4149 2.045 1.242 29.92 29.92 0.18

TABLE VI. Parameters for analytic approximation ofB12(T) for the
H2O¯H2 complex. Theci are in cm3 mol21 and thedi are dimensionless.
The analytic form is that given in Eq.~24!.

i ci di

1 33.047 20.21
2 2250.41 21.50
3 285.42 22.26
4 2186.78 23.21

718 J. Chem. Phys., Vol. 120, No. 2, 8 January 2004 Hodges et al.

Downloaded 07 Nov 2007 to 128.243.220.42. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



from Table II in Figs. 6 and 7. Our results are generally
consistent with the data, with the exception of the measure-
ments of Kosyakovet al.37 Data from this laboratory for the
water–argon system also deviate significantly from our pre-
vious calculations and from other experimental data from
several sources;2 it therefore seems likely that these data are
not reliable~a recent compilation ofB12 data4 reached the
same conclusion!. The high-temperature data of Seward
et al.40 look as if they may be systematically too low, but are
consistent with our values within their uncertainties.

Figure 8 shows our results forf12(T), along with the
experimental data of Wormald and coworkers from Table III.
The agreement is reasonable with the exception of three
points between approximately 550 and 600 K. The large
positive values off12 ~larger than the values ofB12) derived
from the data of Lancaster and Wormald44 in this region
implies a significantly negative value of dB12/dT, which is
physically unrealistic at these temperatures. It is interesting
that the older measurements on this system from Wormald
and Colling,45 which were supposedly superseded by the

data listed in Table III, are in significantly better agreement
with our calculations at these three temperatures. As for the
B12(T) results, our calculations lead to significantly smaller
error estimates than those for the experimental data.

IV. CONCLUSIONS

We use scaled perturbation theory to examine the
potential-energy surface of H2O¯H2, with basis sets chosen
to give a good description of the dispersion interaction. The
binding energy is found to be about 1100mEh , and the first-
order Coulomb and second-order dispersion contributions
are of similar magnitude at the global minimum. However,
the anisotropy of the first-order Coulomb energy is much
greater than for the dispersion term, and it is repulsive for
some relative orientations of the two molecules. Good agree-
ment is seen between the scaled perturbation theory and ac-
curate coupled-cluster calculations for both strongly bound
and repulsive regions of the potential-energy surface.

The second virial coefficient,B12(T), is calculated using
an analytic fit of the potential-energy surface. Quantum ef-

FIG. 6. A comparison of theoretical and experimental second virial coeffi-
cient data for the H2O¯H2 complex; lower temperature range. An estimate
of the uncertainty in this work is indicated by the shaded region.

FIG. 7. A comparison of theoretical and experimental second virial coeffi-
cient data for the H2O¯H2 complex; higher temperature range. An estimate
of the uncertainty in this work is indicated by the shaded region.

FIG. 8. A comparison of theoretical and experimentalf125B12

2T(dB12 /dT) data for the H2O¯H2 complex. An estimate of the uncer-
tainty in this work is indicated by the shaded region.

TABLE VII. H 2O¯H2 second virial coefficients derived using Eq.~24! and
the parameters from Table VI. Temperatures are given in K,B12 and their
uncertaintiesDB12 in cm3 mol21.

T B12 DB12

200 220.56 3.37
250 29.96 2.61
300 23.61 2.11
400 3.66 1.51
500 7.62 1.16
600 10.03 0.94
700 11.59 0.79
800 12.65 0.69
900 13.39 0.61

1000 13.91 0.55
1200 14.56 0.46
1400 14.90 0.40
1600 15.07 0.36
1800 15.13 0.33
2000 15.13 0.31
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fects are included using several methodologies. Classical,
semiclassical~to first order in\2), effective-potential, and
path-integral calculations are performed, and results are pre-
sented for a temperature range of 100–3000 K. The semi-
classical results are reliable for temperatures greater than
about 250 K, whereas the effective-potential results are rea-
sonable even at 150 K. The estimated uncertainty in the path-
integral calculations at 100 K is significantly smaller than the
error associated with the effective potential results. Experi-
mental values ofB12 are extracted from a number of sources.
They are mostly consistent with our calculations, but have
large uncertainties and are available over a smaller tempera-
ture range, about 200–700 K, than needed for the applica-
tions of interest to us. We fit an analytic function toB12(T)
and calculatef125B122T(dB12/dT), for which experimen-
tal data are also available. Again, the theoretical results are
generally consistent with the data, but have smaller uncer-
tainties.

We conclude that, for this system, where the range of
experimental thermodynamic data and the accuracy of values
for B12 extracted from these data leave much to be desired, a
theoretical approach is preferable. Furthermore, the scaled
perturbation theory presented here involves no adjustable pa-
rameters and offers an efficient way of calculating interaction
energies for weakly bound complexes. We expect the same to
be true for the interactions of water with the diatomic gases
N2 and O2, which are of greater practical interest.

ACKNOWLEDGMENTS

This work was funded in part by the Engineering and
Physical Sciences Research Council. One of us~G.K.S.! was
supported by the Division of Chemical Sciences, Office of
Basic Energy Sciences, U.S. Department of Energy. Battelle
operates the Pacific Northwest National Laboratory for the
Department of Energy. The authors thank E. W. Lemmon for
assistance in fittingB(T) correlations.

1M. P. Hodges, R. J. Wheatley, and A. H. Harvey, J. Chem. Phys.116, 1397
~2002!.

2M. P. Hodges, R. J. Wheatley, and A. H. Harvey, J. Chem. Phys.117, 7169
~2002!.

3V. Gurau, H. Liu, and S. Kakac, AIChE J.44, 2410~1998!.
4A. V. Plyasunov and E. L. Shock, J. Chem. Eng. Data48, 808 ~2003!.
5D. W. Schwenke, S. P. Walch, and P. R. Taylor, J. Chem. Phys.94, 2986
~1991!.

6S. F. Boys and F. Bernardi, Mol. Phys.19, 553 ~1970!.
7Q. Zhang, L. Chenyang, Y. Ma, F. Fish, M. M. Szcze¸śniak, and V. Buch,
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