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A simple computational technique is introduced for generating atomic electron densities using an
iterated stockholder procedure. It is proven that the procedure is always convergent and leads to
unique atomic densities. The resulting atomic densities are shown to have chemically intuitive and
reasonable charges, and the method is used to analyze the hydrogen bonding in the minimum energy
configuration of the water dimer and charge transfer in the borazane molecule. © 2009 American
Institute of Physics. �doi:10.1063/1.3243863�

I. INTRODUCTION

One of the most widely held and successful concepts in
chemistry is that a molecule is composed of its constituent
atoms held together by chemical bonds and that molecular
properties can be expressed as a sum of the individual atomic
properties. The gap between rigorously defined ab initio mo-
lecular properties and the more conceptual chemical proper-
ties, which atoms and functional groups are known to pos-
sess based on scientific experience, are unsolved problems,
as there is no unique way to partition the molecular electron
density into a sum of its atomic components.

Methods for generating atomic electron densities can be
broadly separated into two groups. The first involves basis
set partitioning, of which the most common is the well-
known Mulliken method.1 These methods, however, com-
monly suffer from a marked dependence on basis set as well
as yielding regions of negative atomic electron density.
The second group is based on real space partitioning meth-
ods. The most well-known of these is Bader’s Atoms in
Molecules �AIM� approach.2 This method generates atomic
electron densities by using the topology of the molecular
electron density to partition the molecule into atomic basins.
The atomic electron density is then obtained by integrating
over the atomic basin. The disadvantage of the method is that
the atomic electron densities are discontinuous at the basin
boundary, yielding highly nonspherical atoms. An alternative
to the AIM approach is one introduced by Hirshfeld3 based
on stockholder partitioning. The idea behind this approach is
that the electron density at every point is distributed between
all atoms based on a weighting function for each atom. This
allows for atomic electron densities to overlap. In the origi-
nal Hirshfeld approach, the weighting functions for each
atom were based on the electron density of the isolated at-
oms in the gas phase, leading to atomic electron densities
that are dependent on the choice of the isolated atom’s elec-
tron configuration. This dependence is largely removed by
the iterative Hirshfeld method �Hirshfeld-I� introduced by
Bultinck et al.;4 however calculations of gas-phase electron
densities are still required.

The present paper expands upon an iterative stockholder
partitioning method,5 which allows for reasonably spherical
overlapping atoms, requires no supplementary calculations,
and is independent of the gas-phase atomic electron density.
The theoretical basis for the iterative stockholder method is
presented in Sec. II, methods for calculating iterative stock-
holder atoms �ISA� are presented in Sec. III, and results and
conclusions are presented in Sec. IV. Atomic units are used
in this paper. The physical constants 4��0 ��0=vacuum per-
mittivity� and e �the elementary charge constant� both have
the numerical value of one in atomic units. The atomic unit
of length is the bohr, a0=5.291 772�10−11 m, and the
atomic unit of energy is the hartree, Eh=4.359 75�10−18 J.

II. THEORY

Atomic electron densities that are positive and exactly
reproduce the molecular electron density may be generated
via the stockholder method using spherically symmetric
weighting functions wa�r� centered at the atomic nuclei a,

�a�r� = ��r�
wa�r�

�bwb�r�
, �1�

where ��r� and �a�r� are the molecular and atomic electron
densities at any point r and the sum in the denominator is
over all nuclei in the molecule. In the original stock-
holder method, atomic densities are calculated in the gas
phase, spherically averaged, and then used as the weighting
functions.

In the iterative stockholder procedure, no supplementary
gas-phase calculations are required; a starting guess of
wa�r�=1 for all nuclei is used in Eq. �1� to generate the
initial iteration of the atomic electron density �a�r�. This
density is then spherically averaged around the nucleus to
generate the next iteration of weighting functions using

wa�r� = ��a�r��a = �a
0�r� , �2�

where the angular brackets indicate a spherical average
around nucleus a and the equivalent notation �a
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for brevity. The weighting functions generated using Eq. �2�
are then used to generate new stockholder atoms via Eq. �1�,
which are in turn used to generate the next iteration of
weighting functions. The process is repeated until both Eqs.
�1� and �2� are solved simultaneously.

The simultaneous solution of Eqs. �1� and �2� is equiva-
lent to minimizing the functional

F��0� =� �0 − � ln
�0

�
dr , �3�

with respect to the promolecule density �0 and with the con-
straint that �0 is the sum of positive spherical functions cen-
tered on the nuclei. The integral is over all space, and the r
dependence of the densities is not shown explicitly. The
minimum possible value of F��0� is equal to the number of
electrons Ne and occurs when the promolecule density is
equivalent to the molecular density, a case that will rarely
happen in practice.

In order to show that the iterative procedure approaches
the minimum of the functional F��0�, the promolecule den-
sity after iteration X can be written as

�0�X� = �
a

�a
0�X� . �4�

Equations �1� and �2� are then applied to each atom a in turn
to generate the next iteration, keeping all weighting functions
involving nuclei other than a constant,

�a
0�X + 1� = 	 �a

0�X��
�0�X� 
a

= �a
0�X�	 �

�0�X�
a
. �5�

The condition for a minimum of F��0� can be obtained by
differentiating Eq. �3� with respect to spherically symmetric
variations in �0 about nucleus a, yielding

	 �

�0

shell,a

= 1. �6�

If this is true following iteration X, i.e.,

	 �

�0�X�
shell,a
= 1, �7�

further iteration via Eq. �5� leads to �a
0�X+1�=�a

0�X�. If Eq.
�6� is not satisfied following iteration X, consider a single
spherical shell centered on nucleus a for which

	 �

�0�X�
shell,a
= R � 1. �8�

After the next iteration using Eq. �5�,

�a
0�X + 1� = R�a

0�X� , �9�

and this leads to the inequalities

R = 	 �

�0�X�
shell,a
= 	 �

�a
0�X� + �b�a�b

0�X�
shell,a

� 	 �

R�a
0�X� + �b�a�b

0�X�
shell,a

= 	 �

�0�X + 1�
shell,a
.

�10�

and

	 �

�0�X + 1�
shell,a
= 	 �

R�a
0�X� + �b�a�b

0�X�
shell,a

� 	 �

R�a
0�X� + R�b�a�b

0�X�
shell,a

=
1

R
	 �

�0�X�
shell,a
= 1. �11�

The value of �� /�0� on nucleus a after iteration X+1 is be-
tween R and one and therefore is closer to the solution, Eq.
�6�; then it was after iteration X. A similar argument holds for
R�1 in Eq. �8�, whereby iteration of �0�X� results in a value
greater than one and less than R. It should be noted that for
these arguments to hold, it is required that �� ,�a

0 ,�b
0��0,

which is always the case in the iterative scheme provided �
�0.

The functional in Eq. �3� can be shown to have a unique
minimum by considering a small change to �0, i.e., �0+��0.
Substituting into Eq. �3� yields

F��0 + ��0� =� �0 + ��0 − � ln
�0 + ��0

�
dr =� �0 + ��0 − � ln

�0�1 + ��0/�0�
�

dr

=� �0 + ��0 − � ln
�0

�
− � ln�1 + ��0/�0�dr = F��0� +� ��0 − �

���0

�0 −
1

2
���0

�0 �2

+ �
n=3

	
�− 1�n+1

n
���0

�0 �n�dr

= F��0� +� �1 −
�

�0���0 +
1

2
����0

�0 �2

+ �
n=3

	
�− 1�n+1

n
���0

�0 �n

dr . �12�
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The curvature of the functional is therefore always positive
in every direction, so it has no maxima or saddle points and
only one minimum. A similar proof of the uniqueness of the
minimum is offered by Bultinck et al.6 The iterative proce-
dure requires positive definiteness of the spherical atoms, a
condition not required for minimization of the functional in
Eq. �3�. Alternative methods of minimizing F��0� could con-
sider regions of both positive and negative densities by re-
placing � with ��� in Eq. �3� but not in Eq. �1�.

Finally, it can be shown that when F��0� is at the mini-
mum, the integral of the spherical density over all space must
equal the number of electrons Ne. Starting from Eq. �6�,

	 ��a
0

�0 

a

= �a
0,

� ��a
0

�0 dr =� �a
0dr ,

�13�

� ��a�a
0

�0 dr =� �
a

�a
0dr ,

� �dr =� �0dr = Ne.

In the iterative stockholder procedure, the condition ��0dr
=Ne is not only fulfilled at the minimum but also after each
iteration.

III. METHODS

In order to calculate the spherically averaged densities in
Eq. �2� and the functional in Eq. �3� and to evaluate atomic
charges and multipoles, a suitable method of integration over
the molecular volume must be chosen. Much work has been
done on this problem with respect to the integration of the
exchange-correlation functional in density functional theory
�DFT� over molecular volume.7,8 In DFT integration, the in-
tegral of an arbitrary function F�r� is partitioned into atom-
centered regions, and then a sum over all regions approxi-
mates the molecular integral,

� F�r�dr = �
atoms,r,


wBeckewrw
F�r,
� , �14�

where the sum is over atoms, radial grid points, and angular
grid points and F�r ,
� is the function evaluated at a given
grid point. The Becke partitioning scheme7 is used to gener-
ate the Becke weights wBecke, the method of Mura and
Knowles �Log3� to generate the radial grid points and
weights, wr,

8 and the angular grid points of Lebedev and
Laikov9 are used with weights w
=4� /n
, where n
 is the
number of points in the angular shell. The atomic charges of
the iterated stockholder atoms are then obtained from

qa = Za − �
atoms,r,


wBeckewrw
�a�r,
� �15�

where Za is the nuclear charge and �a�r ,
� is the iterated
stockholder density obtained using the methods of Sec. II.

In order to generate the spherical average in Eq. �2�, it is
necessary to average each radial shell over its constituent
angular points. Since all w
 are the same within a radial
shell,

�a
0�ri� =

1

n

�



�a�ri,
� , �16�

where �a
0�ri� is the spherically averaged density of the ith

radial shell. To calculate the next iteration of the atomic den-
sities using Eq. �1�, it is then necessary to obtain the spheri-
cal density of every atom a at every grid point not only those
belonging to �i.e., in the integration grid of� atom a. Equation
�16� enables �a

0�ri� to be calculated for all radii ri of radial
shells of grid points for atom a but not in between those
values. In order to obtain the spherical density of atom a on
a grid point belonging to atom b, the distance ra of the point
to center a is calculated, and exponential interpolation of �a

0

is used between the two radial shells of atom a bracketing ra.
Points outside the largest radial shell of atom a are assigned
a value of �a

0=0. This is not found to affect the results within
the precision of the numerical integration. A single iteration
of the iterated stockholder method starting from a set of
weighting functions therefore consists of calculating atomic
densities at every grid point using Eq. �1�, spherically aver-
aging these for each atom at grid points belonging to that
atom using Eq. �16�, and finally interpolating these to grid
points belonging to all other atoms. The spherically averaged
atomic densities are then used as weighting functions for the
next iteration until self-consistency is achieved, which is de-
fined for iteration X using

� = �
a

�
i

nr

ri
2��a

0�i,X� − �a
0�i,X − 1�� , �17�

where ��10−6 is taken to be converged.
In order to investigate the dependence of the ISAs on

grid size, ISAs are calculated using different radial and an-
gular grids. The ISAs are found to be less sensitive to the
angular grid than to the radial grid, and a standard angular
grid �grid 4�10 is found to be sufficient. Increasing the angu-
lar grid is not found to have an effect on ISA charges, di-
poles, or quadrupoles, but if higher order multipoles are
needed, it may be necessary to increase the number of angu-
lar points. Figure 1 shows the ISA charges of HCONH2 cal-
culated at the B3LYP �Ref. 11�/aug-cc-pVDZ �Ref. 12� level
of theory using an increasing number of radial points with
the same angular grid. The ISA charges are found to be con-
verged to the nearest hundredth of an electron when 80 radial
points are used for hydrogen and 85 for heavier elements.

IV. RESULTS AND CONCLUSIONS

In order to demonstrate the utility of the iterated stock-
holder procedure, the first molecule chosen for study is LiF.
A well-known deficiency of the original Hirshfeld procedure
is that the final charges obtained are highly dependent on the
initial spherical atomic density; in the case of LiF, an initial
guess of Li+–F− yields different results for the final charges
than an initial guess of Li–F or Li−–F+. This deficiency is
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overcome in the iterative Hirshfeld procedure of Bultinck
et al.4 as well as the current method because they are inde-
pendent of the initial guess. Using the B3LYP/aug-cc-pVTZ
method with a bond length of 3.022 a0 and starting from
initial weighting functions of wLi�r�=1, wF�r�=1, a final
charge of �0.969 e is found for each atom. These charges
are close to the values �1 e that would be expected for a
bond with ionic character. Fitting the charges to the LiF di-
pole, �z=2.624 e a0, yields �0.868 e for the atoms. The
difference between the dipole calculated using the ISA
charges and the molecular dipole must arises due to atomic
dipoles. In accord with physical intuition, the ISA method
predicts that it is mainly the F atom that is polarized, having
a dipole of �z=−0.321 e a0, whereas the ISA Li atom has
�z=0.006 e a0.

The general applicability of the iterated stockholder pro-
cedure is further demonstrated by applying it to the case of
ions. Table I shows ISA and Mulliken1 charges for a variety
of ions and the corresponding conjugate acids and bases cal-
culated using the B3LYP/aug-cc-pVQZ method. The struc-
ture of each molecule is optimized using MOLPRO �Ref. 13�
at the B3LYP/aug-cc-pVDZ level of theory using the highest
point group available. The basis set dependence of the ISA
charges is small; the average difference between values cal-
culated with the aug-cc-pVDZ and aug-cc-pVQZ basis sets is
0.007 e. The average difference between the aug-cc-pVTZ
and aug-cc-pVQZ basis sets is even smaller, 0.001 e, indi-
cating that the results are effectively converged with respect
to basis set at the aug-cc-pVTZ level. It is therefore the
aug-cc-pVTZ basis that is used throughout this study.
The Mulliken method gives reasonable charges for all of
the molecules; however the basis set dependence is large
with an average difference between the aug-cc-pVDZ and
aug-cc-pVQZ basis sets of 0.303 e. Although atomic charges
are arbitrary quantities, the ISA results in Table I are gener-
ally in accord with chemical intuition, with more electrone-
gative atoms generally having more negative charges, acidic
hydrogens being positively charged, and chemically similar
atoms having similar charges.

The water dimer provides a demonstration of the utility

of ISAs applied to hydrogen bonded systems. The second-
order Møller-Plesset �MP2� electron density is used to calcu-
late the ISAs using the aug-cc-pVTZ basis set. The OH bond
length in water is fixed at 1.8361 a0, and the HOH bond
angle at 104.69°,14 with the oxygen atom located at the ori-
gin and the hydrogen atoms located at ��x ,0 ,−z�. For the
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FIG. 1. Charges of iterated stockholder atoms calculated as a function of
radial grid size. The x axis shows the number of hydrogen radial points; five
more radial points are used for heavier elements.

TABLE I. B3LYP ISA and Mulliken charges calculated using the aug-cc-
pVQZ basis set. Units of charge are e.

Mulliken ISA

ClO−

O 0.875 0.679
Cl 0.125 0.321
HOCl
O 0.520 0.410
Cl 0.184 0.002
H 0.336 0.413
CO3

2−

C 0.722 1.455
O 0.907 1.152
H2CO3

C 1.103 1.038
OC 0.540 0.690
OH 0.573 0.627
H 0.320 0.453
NH3

N 0.696 1.021
H 0.232 0.340
NH4

+

N 0.276 0.725
H 0.104 0.431
OH−

O 1.160 1.291
H 0.160 0.291
H2O
O 0.598 0.834
H 0.299 0.417
H3O+

O 0.214 0.723
H 0.405 0.574
CN−

C 0.667 0.500
N 0.333 0.500
HCN
C 0.111 0.070
N 0.446 0.304
H 0.557 0.234
NO3

−

N 0.796 1.180
O 0.599 0.727
HNO3

N 0.908 0.944
OH 0.436 0.536
Ocis 0.426 0.460
Otrans 0.383 0.388
H 0.337 0.440
H2CN−

C 0.352 0.426
N 0.855 0.922
H 0.104 0.252
H3CN
C 0.588 0.134
N 0.519 0.587
Hcis 0.384 0.054
Htrans 0.452 0.086
HN 0.271 0.312
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H2O¯H2O system, the minimum energy water dimer geom-
etry as determined
by van Duijneveldt-van de Rijdt et al.15 based on the
calculations of Smith et al.16 is used. In order to investigate
the effects of charge transfer and dipole polarization on
the monomers, the distance R between the monomers is
then varied between 4.4–7.0 a0. The Euler angles describ-
ing the dimer at the minimum are ��1 ,�1 ,�1�
= �−180° ,124.79° ,0°� and ��2 ,�2 ,�2�= �0° ,134.15° ,
−90°�, and monomer 2 is translated relative to monomer 1 by
a distance R along the +z direction. Figure 2 shows the ISA
charge of each of the atoms along with the overall charge of
the proton acceptor �i.e., the sum of its ISA charges�. At the
equilibrium bond length, an overall charge of +0.026 e is
found for the proton acceptor. The amount of charge trans-
ferred is found to be exponential over a large range of bond
lengths, with ln q�acceptor��x+yR. The ISA charges of the
donor molecule show the largest changes, with the donor
proton becoming more positive, while the donor oxygen be-
comes more negative when the hydrogen bond is formed. A
reconstruction of the molecular dipole for each monomer
using the monomer ISA charges shows good agreement, in-
dicating that only changes in the atomic charges can be used
to obtain qualitative trends in bonding processes. Polariza-
tion of the donor molecule is therefore shown in an ISA
picture to consist mainly of electron transfer from Hd to Od.

The borazane molecule H3BNH3 provides a further dem-
onstration of the ISA method applied to charge transfer com-
plexes. The MP2 electron density is used along with the
aug-cc-pVTZ basis set to calculate the ISAs. The MP2 opti-
mized C3v eclipsed and staggered geometries of Jagielska
et al.17 are used to examine the charge transfer. The stag-
gered geometry conforms to the global energy minimum,
while the eclipsed conformation is a saddle point. In the
staggered complex the amount of ISA charge transferred cor-
responds to −0.383 e �−0.384 e for the eclipsed complex�
transferred from the NH3 monomer to the BH3 monomer, as
shown in Table II. The trends are similar for both complexes;
a comparison of the individual ISA charges between the
monomers and staggered complex shows that the majority of

the charge is transferred between the boron and nitrogen,
with smaller amounts being transferred to/from the hydro-
gens.

The radial behavior of the spherically averaged ISA
atoms is fitted to a spherically symmetric function �̃a

0 by
minimizing the residual quantity

Za��� =� � ��a
0�r1� − �̃a

0�r1����r12�

���a
0�r2� − �̃a

0�r2��dr1dr2, �18�

where ��r12� is the fitting criterion chosen to be 1 /4��0r12,
which fits the electric field.18 The fit is constrained to repro-
duce the number of ISA electrons Ne. The fitting functions �̃a

0

are chosen to be either a single exponential �c1e−�1r� in the
case of hydrogen or a biexponential �c1e−�1r+c2e−�2r� for sec-
ond row atoms. Results are shown in Table III for NO3

− and
CO3

2− as well as their conjugate acids. The radial densities
are calculated using the B3LYP/aug-cc-pVTZ method using
the previously optimized aug-cc-pVDZ geometries. The val-
ues of Z��� obtained using the exponential fits are several
orders of magnitude less than the Coulomb self-interaction
energy �I� of the spherical densities, indicating that the ex-
ponential functions are a good fit to the spherical density.
Results for the first-row atoms consistently show an “inner
shell” with a large exponent that remains fairly constant be-
tween atoms of the same type and a “valence shell” with a
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FIG. 2. Charges of iterated stockholder atoms in the water dimer. The sub-
script a�d� refers to the hydrogen bond acceptor �donor�, f refers to the free
hydrogen on the proton donor, and qmon is the charge of the atom in the
isolated monomer. The overall charge transfer to the acceptor water mono-
mer is shown in the inset.

TABLE II. MP2 ISA charges for the borazane charge transfer complex and
monomers BH3 and NH3 calculated using the aug-cc-pVTZ basis set. Units
of charge are e.

B HB N HN

Monomers 0.626 0.209 1.072 0.357
Eclipsed 0.392 0.259 0.588 0.324
Staggered 0.386 0.256 0.607 0.330

TABLE III. Best fits to the B3LYP spherical charge density using Eq. �18�
with the aug-cc-pVTZ basis set. The coefficients ci��i=1,2� are related to ci

by ci�=8�ci /�i
3 so that Ne=c1�+c2�. The units of Z��� and I are Eh.

c1� c2� �1 �2 Z��� Ia

NO3
−

N 1.59 4.23 15.3 2.6 0.02 43.78
O 1.68 7.05 17.1 2.4 0.01 80.33
HNO3

N 1.62 4.44 15.2 2.5 0.02 45.29
OH 1.62 6.92 17.5 2.5 0.02 79.21
Ocis 1.63 6.83 17.4 2.5 0.02 78.32
Otrans 1.65 6.74 17.3 2.5 0.02 77.75
H 0.56 ¯ 2.8 ¯ 0.00 0.28
CO3

2−

C 1.68 2.87 12.6 2.3 0.02 28.03
O 1.71 7.44 16.9 2.3 0.01 83.35
H2CO3

C 1.66 3.30 12.7 2.2 0.01 30.06
OC 1.59 7.10 17.7 2.5 0.02 80.52
OH 1.61 7.01 17.5 2.5 0.02 80.40
H 0.55 ¯ 2.9 ¯ 0.00 0.27

aI= �4��0�−1���a
0�r1��a

0�r2� /r12dr1dr2.
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remarkably consistent exponent but a variable number of
electrons c2�, depending on the chemical environment. This
points to the possibility of transferability of ISA densities
between similar atoms.

V. CONCLUSIONS

In conclusion, the ISA method has been introduced as a
simple way to partition molecular electron densities into
atomic components. The method requires no auxiliary gas-
phase calculations for the free atoms and can easily be incor-
porated into any quantum chemistry software with a DFT
integration package. The time required to perform the itera-
tive procedure is typically less than that required to set up the
DFT grid, and the procedure scales quadratically with the
number of atoms.
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