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ABSTRACT: We propose a new simulation method, which
combines a cage model and a density of states partitioning
technique, to compute the free energy of an arbitrary solid.
The excess free energy is separated into two contributions,
noninteracting and interacting. The excess free energy of the
noninteracting solid is computed by partitioning its geo-
metrical configuration space with respect to the ideal gas. This
quantity depends on the lattice type and the number of
molecules. The excess free energy of the interacting solid, with
respect to the noninteracting solid, is calculated using density
of states partitioning and a cage model. The cage model is
better than the cell model in that it has a smaller configuration
space and better represents the equilibrium distribution of solid configurations. Since the partition function (and hence free
energy) is obtained from the density of states, which is independent of the temperature, equilibrium thermodynamic properties at
any condition can be obtained by varying the density. We illustrate our method in the context of the free energy of dry ice.

■ INTRODUCTION
Computing free energy has been an active field of theoretical
research for many decades and still remains a challenge in
molecular simulation. Many physical and chemical phenomena
can be elucidated from the knowledge of the free energy.
Thermodynamic integration1 is frequently used to determine
the free energy difference between two states. However, it can
be computationally demanding when applied to systems with
large and complex changes, for example, calculation of solvation
free energies of large solutes or calculation of the free energy of
complex conformational changes. Thus, it is important to
develop techniques that can provide the absolute free energy
for each state independently, allowing the free energy difference
to be calculated even for significantly different states because
the integration path is avoided. Efforts toward achieving this
goal have been made.2,3 However, their applications are
relatively limited to simple systems.
Calculating the free energy via the density of states is

efficient. As the density of states is independent of the
temperature, equilibrium thermodynamic properties at any
condition can be obtained from Ω(E,ρ) by varying the density.
Elegant approaches for calculating the density of states have
been developed in the past few decades.4−8 Most of these were
developed for systems with a discrete and finite energy range.
When applied to systems with a continuous and infinite energy
range, one has to choose a finite range of energy (cutting off the
high-energy range) either via trial and error or by
calculation.9−11 Thus, the partition function can only be
computed to within a multiplicative constant. Recently, we have
developed a density of states (DOS) partitioning Monte Carlo
(MC) technique that can overcome these limitations.12,13 The
DOS partitioning method calculates the density of configura-

tional energy states, from which the excess partition function
and hence the excess free energy of molecular fluids can be
obtained. The absolute free energy can be calculated by adding
the ideal gas free energy to the excess free energy. The DOS
partitioning method has been applied to calculate the free
energies of pure and binary mixtures of fluids.12,13 A similar
technique named ″Nested Sampling″ has been proposed by
Partay et al.14 and Burkoff et al.15 to study small Lennard-Jones
clusters and simple protein models. The DOS partitioning
method is equivalent to Nested Sampling as generalized by
Partay et al.14 with half of the distribution sampled at each step.
The freezing transition properties of model systems and real

fluids are of tremendous importance. Since the measurement of
these properties is time-consuming and expensive, computer
simulation based on molecular modeling is a promising
alternative. Thermodynamic integration in combination with
a solid model with known free energy has been the most
commonly used approach to calculate the freezing transition
properties.16,17 A weakness of this approach, however, is the
possibility of encountering singularities along the integration
path, and numerous simulations may be required to traverse the
path. In this work, we propose an improved version of the DOS
partitioning method together with a new solid model (the cage
model) for efficiently computing the absolute free energy of an
arbitrary solid. The free energy of the cage model cannot be
calculated analytically. However, it can be computed easily by
utilizing the DOS partitioning approach.
Of particular interest to us are systems that contain carbon

dioxide (CO2).
13,18−22 While the fluid phase of CO2 has been
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extensively studied in molecular simulation, its solid phase has
received rather less attention. In this paper, we apply our new
DOS partitioning method together with the cage model to
calculate the free energy of CO2 cubic phase I, commonly
known as dry ice. We also present the solid−vapor and solid−
liquid phase diagram for CO2. This is a key step to predicting
high-pressure structures of CO2, which have recently attracted
much attention.23−31

■ THE DENSITY OF STATES PARTITIONING METHOD
Calculating the Density of States and Partition

Functions. The DOS partitioning method12,13 divides the
configurational energy range recursively into subdivisions
(indexed m), working down from infinite energy, such that
the integrated normalized density of states ∫ Em

Em−1Ω(E)dE/
∫ −∞
∞ Ω(E)dE is 1/21 for the first energy subdivision (m = 1, E1

≤ E ≤ E0, E0 =∞) (see Figure 1 in refs 12 and 13), 1/22 for the

second subdivision (m = 2, E2 ≤ E ≤ E1), and so on down to 1/
2n for the two lowest-energy subdivisions (m = n, En ≤ E ≤ En−1
and m = n+1, −∞ ≤ E ≤ En).
For the nth division of the density of states (to produce

energy boundary En), MC sampling is performed with a
discrete weighting function w(E) = 4m for the previously
calculated subdivisions m < n (subdivision 1 being the highest
energy). The first division of the energy (to produce the energy
boundary E1), n = 1, does not employ any weighting function
(random sampling). For larger n, the weighting function is
essential to speed up the simulations; it ensures that about 2/3
or more of the configurations of the system fall into the current
lowest-energy subdivision.12 At the end of a predetermined
number of MC moves, the energy boundary En is set equal to
the median configurational energy found in the lowest-energy
subdivision −∞ ≤ E ≤ En−1, and all sampled energies are
discarded. The simulation is repeated to find as many energy
subdivisions as required. Details on the stopping criterion can
be found in our previous work.12,13 The excess partition
function (Qex) is obtained from the normalized integrated
density of states as Qex = Σm=1

m=n+12−m exp(−β⟨E⟩m)/Σm=1
m=n+12−m

(Figure 2a), where ⟨E⟩m = (Em+Em−1)/2. For the first energy

subdivision (m = 1), ⟨E⟩m is set equal to E1, and for the last
energy subdivision, ⟨E⟩m is set equal to En, Also, in the last
energy subdivision, 2−m is replaced by 2−n, as the normalized
integrated density of states of the two lowest-energy
subdivisions are the same and equal to 2−n.

Continuous Weighting Functions. The drawback of the
above weighting function is that the discontinuous weights
w(E) may reduce the likelihood of the system moving between
energy subdivisions. To circumvent this, we propose a new
continuous weighting function w(E) = exp(−3loge2(E−En−1)/
En−2−En−1) for the nth division of the density of states when n ≥
3 and E ≥ En−1; w(E) = 1 for the first two divisions n = 1,2, and
whenever E < En−1. This weighting function is designed such
that if the density of states Ω(E) is roughly exponential near En,

Figure 1. A simple two-dimensional example to depict the cage model.
i is the central molecule, and j1, j2, and j3 are its nearest neighbors. rji

latt

is an ideal lattice vector, rji is an intermolecular vector, and molecule i
is restricted to the intersection of the circles centered at rj+rji

latt, for j =
{j1,j2,j3}.

Figure 2. Schematic (not to scale) explaining the partitioning of the
density of states for (a) an interacting system (partitioning E) and (b)
for a noninteracting system (partitioning k) with n = 4. m labels the
DOS partitions.
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about 2/3 of the configurations of the system fall into the
current lowest-energy subdivision. The probability of accepting
a move from an old state with configurational energy Eold to a
new state with configurational energy Enew, using the
Metropolis acceptance criterion, is

→ =P w E w E(old new) min[1, ( )/ ( )]new old (1)

It is important to note that the continuous weighting
function does not add any bias to the density of states
calculations, because it is always equal to one in the sampled
region.

■ CALCULATING THE FREE ENERGY OF A SOLID
The density of states of a solid is small compared to that of a
liquid, and the DOS partitioning method cannot locate the
correct structure of a solid: it finds supercooled liquid structures
instead. Nested Sampling with many walkers may be able to
find solid structures for small numbers of particles,14 but this
could require a great increase in computational expense. Thus,
a guided simulation with a good order parameter is useful to
partition the configuration space of solids.
The free energy of a solid is expressed as F = Fid+Fex, where

Fid and Fex are the ideal gas and excess free energies,
respectively. The excess free energy is separated into two
contributions: Fex

1 and Fex
2 . Fex

1 is the excess free energy of a
noninteracting solid with respect to the ideal gas, and Fex

2 is the
excess free energy of an interacting solid with respect to the
noninteracting solid. Fex

2 can be obtained by utilizing the DOS
partitioning approach12,13 with the reference system being the
noninteracting solid. Fex

1 for many solid models including the
cell16 and Einstein crystal17 models can be calculated exactly.
However, if a solid model that does not have an exact
expression for Fex

1 is used, one has to calculate Fex
1 , and our DOS

partitioning approach is suitable for this task.
The Cage Model for a Solid. In this work, we propose a

new solid model, which we refer to as a ″cage model″. It can be
applied to a general solid, for which each molecule i is
surrounded by neighbors j in the perfect crystal. The number of
neighbors in the cage model is determined based on the type of
perfect crystal (e.g., 12 for FCC lattice). We denote the ideal
lattice vectors from j to i as rji

latt and the actual intermolecular
vectors during the simulation as rji. The cage model restricts all
″neighbor″ vectors rji such that |rji−rjilatt|≤kmax|rjilatt|, where kmax is
a constant that is determined empirically. Figure 1 shows a
simple example of a molecule i and three of its ″neighbors″
j1→3. In the cage model, each particle i is constrained (caged) in
a region which is formed by the intersection of several spheres
of radius kmax|rji

latt|. Note that if kmax is large, the molecules i and j
may not be nearest neighbors during the simulation. When kmax
= ∞, the system is not constrained at all by the cage model.
Nevertheless, the same ij pairs are treated as ″nearest
neighbors″ within the cage model; the neighbor list does not
need to be updated. As kmax is reduced, the structure of the
solid is formed.
Fex
1 for the cage model can be calculated by partitioning its

geometrical configuration space with respect to the ideal gas
(molecule number 1 is fixed, for convenience). We partition the
configuration space as a function of k, which is maxji(|rji−rjilatt|/|
rji
latt|) for all ″nearest neighbor″ pairs ij. In this case, k takes the
place of the configurational energy in the DOS partitioning
approach. A schematic of the partitioning process of both E and
k is shown in Figure 2. The partitioning process is terminated
when k ≤ kmax. If the last boundary kn equals kmax, then Qex

1 (the

fraction of the configurational space of the ideal gas that obeys
the cage model) equals N!/2n, where n is the number of
partitions and the factor N! is due to indistinguishability.
However, it is very unlikely that kn = kmax by chance. In practice,
kn < kmax and then Qex

1 = N! × f/2n−1, where f = Nconfig(k <
kmax)/Nconfig(k < kn−1). At the end of the partitioning process,
Fex
1 is calculated as Fex

1 = −kBTlogeQex
1 .

The Cage versus the Cell Model. A good model for a
solid is one that can describe the real solid under a broad range
of conditions, especially at low density and high temperature,
and that has a small configuration space. In the cage model, the
constant kmax must be specified. kmax should be large enough so
that the model can capture all of the equilibrium distribution of
the real solid configurations, but at the same time it should be
kept as small as possible to maintain a small configuration
space. In the cell model, the volume V of the simulation box is
divided into N Wigner-Seitz cells16 representative of the solid
phase under consideration. The cell model restricts all particles
i to stay within their cells, such that |ri−rilatt|≤|ri−rjlatt| ∀j. The
fraction of the ideal gas that obeys the cell model is known
exactly. To compare the cage against the cell model, we
consider a FCC 12−6 Lennard-Jones solid. The cage model
uses 12 ″neighbors″ for each molecule. We perform a set of
NVT MC simulations of the solid using 500 particles at two
points near the phase transition line: one is near the triple point
(low density ρ* = 0.98 and low temperature T* = 0.70) and
one is above the critical point (low density ρ* = 1.12 and high
temperature T* = 2.0). At each point in phase space, we
calculate the fraction of configurations encountered in the
simulation that obey the cell and cage models. Figure 3a shows
that for kmax ≥ 0.70 more than 99.93% of the configurations
obey the cage model under both conditions, while at high
temperature (T* = 2.0) the cell model only captures about 97%
of the configurations of the solid.
In order to compare the configuration space of the

noninteracting cell and cage models, we calculate Qex
1 (by

partitioning k) of the cage model (Qcage) for each value of kmax
using 500 noninteracting particles and compare it with the Qex

1

of the cell model (Qcell). Figure 3b shows that the total ideal gas
configuration space of the cage model is smaller than that of the
cell model for kmax ≤ 0.92. Thus, we can conclude that the cage
model is better than the cell model for FCC solids if 0.7 ≤ kmax
≤ 0.92. It not only better represents the equilibrium
distribution of solid configurations (Figure 3a) but also has a
smaller configuration space (Figure 3b).

Calculating Qex
1 of the Cage Model. Since both the cell

and cage models attempt to represent the equilibrium
distributions of solid configurations, their configuration spaces
overlap (Figure 4). Partitioning the configuration space of the
cage model with respect to the ideal gas requires a substantial
number of MC steps for each division of k, because the
probability of changing k is small in each step (of order 1/N).
Therefore, we propose a different route to calculate Qex

1

efficiently for the cage model (QCD in Figure 4) using the
exact value of QBC (Qex

1 of the cell model). For this, we need to
calculate the fraction of the configuration space of the cell
model that obeys the cage model (QC/QBC) and the fraction of
the configuration space of the cage model that obeys the cell
model (QC/QCD). Hence, the configuration space of the ideal
gas that obeys the cage model (QCD) is calculated as QCD =
QBC(QC/QBC)/(QC/QCD). To calculate (QC/QBC), we partition
k of the cage model and reject any configuration that does not
obey the cell model. To calculate (QC/QCD), we partition rmax

cell
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of the cell model, which is maxij(|ri−rilatt|−|ri−rjlatt|) for all N
particles i and their 12 nearest neighbors j. We reject any
configuration that does not obey the cage model and stop the
partitioning process when rmax

cell < 0.

■ CASE STUDY FOR DRY ICE
To demonstrate our new technique, we calculate the partition
function, free energy, and solid−fluid equilibrium properties of
CO2. The two most popular force fields for CO2 (EPM

32 and
TraPPE33) are employed. Both of these force fields have been
extensively used in simulations of fluids. However, they have
not been fully tested for simulations involving the solid phase.
The excess free energy of the fluid phase (Fex

f ) is calculated
using our previous algorithm.12,13 Simulations for the solid
phase are performed in a cubic box using 500 molecules with
periodic boundary conditions. The starting configuration for all
simulations is the FCC structure of dry ice. To obtain a value
for the kmax constant, we perform a similar analysis to the

Lennard-Jones solid (described in the previous section) (Figure
3a). Nearest neighbor distances are calculated using the carbon
atom positions. We find that kmax = 0.75 is sufficient to capture
over 99.99% of the solid configurations under all studied
conditions. A spherical cutoff of half of the length of the
simulation box is used to truncate the Lennard-Jones
interactions. Thus, a long-range correction for the r−6 term
(tail correction) is used: Etail = −64πρεσ6/3V, where ρ and V
are the density and volume of the simulation box, respectively,
ε is the potential energy well depth, and σ is the core diameter.
The r−12 term decays rapidly with distance, so a correction for
this term is unnecessary. The quadrupole−quadrupole
interactions are sufficiently short-ranged that a long-range
correction for the electrostatic energy is not needed.
Fex
1 of the cage model is a universal constant; it only depends

on the lattice type and the number of molecules. Table 1 gives
Qex

1 (Fex
1 = −kBTlogeQex

1 ) for the cage model along with QBC,
QC/QBC, and QC/QCD for a different number of particles in a
FCC lattice (see Figure 5).
For CO2, we restrict the molecular rotation to θ ≤ θmax from

the ideal-lattice angles and add Frot = −kBTloge(0.5−0.5cosθmax)
to the excess free energy. Frot is the rotational free energy of the
noninteracting system due to orientation restriction. In the case
of CO2, we also add Fsym = −kBTNloge2 to the excess free
energy to account for indistinguishability due to the symmetry
of the CO2 molecule. To calculate θmax, we perform a set of
NVT MC simulations in the solid phase (using 500 molecules)
at various temperatures in the range 150−400 K and
accumulate histograms of cosθ = rmol

id ·rmol. We find that on
average less than 0.0001% of the configurations have θ ≥ 40o.
Thus, we set θmax = 40o.
Fex
2 is calculated by partitioning the energy of the interacting

cage model with the restriction that θ < 40o. Figure 5 shows the
free energies of the solid (Fid+Fex

1 +Fex
2 +Frot+Fsym) and fluid

(Fid+Fex
f ) phases per particle versus volume per particle for 500

CO2 (TraPPE model) molecules at 260 K. The coexisting
volumes are determined by constructing a double tangent. The
coexisting pressure is the slope of this tangent line. The latent
heat of fusion (or sublimation) equals (⟨E⟩f−⟨E⟩s)+p(Vf−Vs),
where ⟨E⟩ is the ensemble average of the energy (see ref 12).
The sublimation and fusion pressure lines calculated for CO2

using the EPM and TraPPE models are compared to

Figure 3. a) Percentage of solid configurations from NVT MC
simulations of Lennard-Jones solid that obey the cell and cage models
versus the size of the cage (kmax). b) Total ideal gas configuration space
difference between the cage and the cell models versus the size of the
cage (kmax).

Figure 4. Sketch (not to scale) of the configuration spaces of the ideal
gas (A + B + C + D), noninteracting cell model (B + C), and
noninteracting cage model (C + D). QBC is Qex

1 of the cell model, QCD
is Qex

1 of the cage model, and QC is Qex
1 of the overlapping region

between QBC and QCD.
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experimental data34,35 in Figures 6 and 7. Over the entire
temperature range, the TraPPE model shows a good agreement
with experiments, while the EPM model only agrees at low
temperature and gradually overestimates the sublimation and
fusion pressure as the temperature increases. It is encouraging
to see that the relatively simple, nonpolarizable TraPPE force
field for CO2 that was developed by fitting to high-temperature

vapor−liquid equilibria can also be applied to study the solid
phase under a wide range of conditions.
Our calculated triple point is TT = 213 ± 2 K and pT = 4.1 ±

0.3 bar for the TraPPE model, which agrees with simulated data
from the literature.36 The triple point predicted by the EPM
force field is TT = 205 ± 3 K and pT = 2.5 ± 0.3 bar. These
values are slightly below their experimental counterparts (216.6
K and 5.18 bar, respectively37) due to the overestimation of the
sublimation pressure.
The available data for the enthalpy of sublimation of

CO2
34,38,39 are compared with our simulations using the

TraPPE and EPM force fields in Figure 8. Both force fields
slightly overestimate the heat of sublimation and EPM provides
a better prediction. For the enthalpy of fusion at the triple
point, our simulations yield a value of 7.9 ± 0.4 kJ/mol using
the TraPPE force field and 7.0 ± 0.4 kJ/mol using the EPM
force field, while the reported equation of state and
experimental values are 8.05, 8.34, 7.95, and 8.87 kJ/mol.38,39

Figure 9 compares the change in molar volume on melting with
the predictions obtained from the equations of state for the
solid38 and liquid40 phases and the experimental data of
Bridgman.41 There is good agreement with the experimental
data and equation of state at all pressures, although the
simulated values are slightly lower. On the other hand, the
equations of state slightly overestimate the experimental
volume change. The TraPPE force field continues to perform
better than EPM. The predicted change in volume upon
melting by this force field is very close to experiment.

Table 1. Universal Constants for the Cage Model (kmax = 0.75) for Different Number of Particles in a FCC latticea

N logeQex
1 (logeQex

1 )/N logeQBC loge[QC/QBC] loge[QC/QCD]

32 −48.1 (0.4) −1.50 (0.01) −32.00 −19.7 (0.2) −3.6 (0.1)
108 −170.4 (1.2) −1.58 (0.01) −108.0 −69.6 (0.8) −7.2 (0.4)
256 −409.4 (2.9) −1.60 (0.01) −256.0 −166.0 (1.5) −12.7 (1.8)
500 −800.9 (4.4) −1.60 (0.01) −500.0 −322.0 (3.4) −21.1 (0.9)
864 −1383.0 (7.3) −1.60 (0.01) −864.0 −552.8 (5.9) −33.8 (1.2)

aNumbers in parentheses are standard deviations.

Figure 5. Helmholtz free energy per particle versus volume per particle
of CO2 (TraPPE) at 260 K. The error bars are too small to show on
the plot.

Figure 6. Solid−vapor equilibrium of CO2: experiment (solid line),34

EPM force field (star), and TraPPE force field (circle).

Figure 7. Solid−liquid equilibrium of CO2: experiment (solid line),35

EPM force field (star), and TraPPE force field (circle).
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■ CONCLUSION
In summary, we have developed a new technique, which
combines a cage model and an DOS partitioning approach, to
compute the excess free energy of an arbitrary solid. We apply
our method to calculate the excess free energy of CO2 cubic
phase I (dry ice) and predict its solid−vapor and solid−liquid
phase transition using the EPM and TraPPE force fields. Our
cage model for the solid has a better performance than the cell
model, because it better represents the equilibrium distributions
of solid configurations, while having a smaller configuration
space than that of the cell model. The excess free energy of the
noninteracting cage model is a universal lattice constant, which
only depends on the lattice type and the number of molecules.
That means this quantity only needs to be calculated once and
then can be used for any crystalline system.
In general, the agreement between simulated data, experi-

ment and equations of state is satisfactory. Simulations slightly

overestimate the sublimation pressure, fusion pressure, and heat
of sublimation, while they slightly underestimate both TT and
pT (triple point), heat of fusion, and the volume changes upon
melting. Overall, the TraPPE force field performs better than
EPM, in terms of predicting the free energy of the solid and the
solid−fluid phase transition properties. Future work will involve
the study of solid−solid phase transitions and predicting high-
pressure structures of CO2.
Since the partition function (and hence free energy) is

obtained from the density of states, which is independent of the
temperature, equilibrium thermodynamic properties at any
condition can be obtained by varying the density. This makes
our method efficient in comparison to other free energy
techniques. The DOS partitioning method is not limited to the
study of phase equilibria; it can also be applied to calculate
solvation free energies, nucleation dynamics, and properties of
systems with discrete energy levels, including spin glasses and
lattice models of proteins and polymers.
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