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Intermolecular potential energy extrapolation method for
weakly bound systems: Ar2, Ar–H2 and Ar–HF dimers

ELENA BICHOUTSKAIA*y, AKYL S. TULEGENOV and
RICHARD J. WHEATLEY

School of Chemistry, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK

(Received 4 October 2003; accepted 23 February 2004)

Two methods are presented and compared for modifying the intermolecular potential energy
extrapolation routine SIMPER, to overcome the problems occurring at small intermolecular
separation associated with the use of a Coulomb approximation. The first modification uses
a charge density overlap pseudopotential added to the effective Hamiltonian of each interacting
fragment. The second treats the problem perturbatively, truncating the polarization expansion
series at third order. The methods are used to produce potential energy curves for Ar2 dimer
and several one-dimensional cuts through the Ar–H2 and Ar–HF potential energy surfaces.
Both approaches are competitive with supermolecule dimer calculations at high levels of
theory, and significantly reduce the computational cost.

1. Introduction

In the description of weakly bound systems within
the framework of the Born–Oppenheimer approxima-
tion, two complementary methods are mainly used: a
supermolecule approach based on application of stan-
dard molecular orbital techniques and a perturbative
approach using one of the various formulations of
intermolecular perturbation theory. Both supermolec-
ular and perturbative approaches have their advantages
and disadvantages in studies of weak intermolecular
forces in van der Waals molecules.
The supermolecule ab initio approach to calculating

intermolecular forces is conceptually very simple.
Calculations are carried out on the interacting system
at each relative geometry and the intermolecular
potential is then obtained by subtracting the energies
of the two monomers from the energy of the dimer.
Highly accurate ab initio supermolecule calculations
are possible for the lightest dimers, but become more
expensive and challenging for dimers containing larger
atoms or molecules. The problem is largely one of
calculating the dispersion contribution to intermolecular
forces.

When dispersion forces dominate, large and flexible
basis sets and a high-level treatment of electron
correlation are required to calculate intermolecular
forces. In addition, for molecule–molecule systems, a
very large number of geometry points is essential to
cover fully the complete configuration space. When
choosing the correlation treatment, it is important that
the method be size-consistent, so that the energy of the
supermolecule at infinite separation is equal to the sum
of the monomer energies. The leading size-consistent
method is currently coupled-cluster with single,
double and perturbative triple substitutions, CCSD(T).
Møller–Plesset perturbation methods, such as second-
order, MP2, and fourth-order, MP4, are also used. The
second-order MP2 method is much cheaper than
coupled-cluster calculations, but less accurate than
CCSD(T); the fourth-order MP4 method requires
computational time similar to CCSD(T), but without
proven advantage in accuracy.

Intermolecular perturbation methods, such as
symmetry-adapted perturbation theory [1] and inter-
molecular perturbation theory [2], provide a decomposi-
tion of the interaction energy into physically meaningful
terms, which gives more insight into the nature of the
intermolecular potential than supermolecule calculations.
Some low-order contributions to the interaction energy
can be obtained from ab initio calculations on the isolated
monomers, which avoids the need for a supermolecule
calculation at every geometry. The main problem with
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intermolecular perturbation methods lies in the
calculation of exchange-repulsion and higher-order
terms. Exchange-repulsion interactions cannot be
defined rigorously from monomer-based perturbation
theory and ‘Coulomb’ interactions become rapidly
more expensive to calculate at higher orders.
Our solution to this problem is to develop a treatment

which improves the description of each component of
the interaction energy individually, including dispersion,
exchange-repulsion and electrostatic contributions, by
scaling low-level supermolecule calculations. In our
previous work [3], a new approach was first reported
for improving supermolecule ab initio intermolecular
potentials, the systematic intermolecular potential
extrapolation routine, SIMPER. It is a scaling method
which involves combining quantities obtained from
‘low’ level dimer calculations (exchange-repulsion and
Coulomb energies) with quantities obtained from ‘high’
level monomer calculations (charge density overlaps,
first-order Coulomb interaction energies and dispersion
energy coefficients) in order to estimate the resulting
potential energy surfaces at the ‘high’ level of theory.
The definition of ‘low’ and ‘high’ levels of theory is
flexible and depends on technological limitations only.
The ‘low’ level must be computationally affordable
to produce multidimensional potential energy surfaces
and ‘high’ level is required only in a few monomer
calculations.
In the original formulation of the method [3], (here

called SIMPER-0 to distinguish it from new methods
to be considered later), the induction and dispersion
components of the Coulomb energy were not separated,
but scaled using the ratio of dispersion energy
coefficients evaluated at ‘high’ and ‘low’ levels of
theory, Chigh

6 =Clow
6 . The MP2 theory was used as the

‘low’ level and Chigh
6 was taken from effective dipole

oscillator strength distribution (DOSD) results [4].
The method worked well for small rare-gas systems.
For example, for the He2 and Ne2 dimers, agreement
within about 0.4 cm�1 was seen between the SIMPER-0
results and ab initio interaction energies obtained using
CCSD(T) theory. However, for the Ar2 dimer, the
SIMPER-0 energy near the equilibrium was about 25%
too shallow. For this system, the value of the C6

dispersion coefficient at the MP2 level of theory is in
much worse agreement with accurate values than C8

and C10, which provides an explanation for the
discrepancy in the results. It was concluded that
methods using a separate scaling for each Cn compo-
nent are required.
In subsequent studies [5], the SIMPER method

was improved by using a separate scaling for each
Cn dispersion coefficient in the dispersion energy
(see section 2.1) and potential energy curves were

constructed for homonuclear and heteronuclear rare-
gas dimers including He, Ne and Ar atoms. This method
(here called SIMPER-1) showed much better results
than SIMPER-0, and for some systems (Ne–Ar, Ne–Ne,
for example) achieved an accuracy of about 1–2% in
the binding energy. For the Ar2 dimer, the accuracy
in the binding energy was improved to 5.2%. However,
for this system, as well as for the Ar–H2 dimer,
the SIMPER-0 and SIMPER-1 methods could not be
used to calculate potential energy surfaces at small
internuclear separation. The partitioning of the inter-
action energy into Coulomb and exchange-repulsion
contributions becomes unstable due to ‘collapse’
of the Coulomb wavefunction in this region [6]
and, therefore, the Coulomb component of the
interaction energy needs to be obtained in a different
way.

In this paper, two different ways to tackle the
‘Coulomb collapse’ problem are discussed (sections
2.2–2.4) and the new methods are tested by applying
them to Ar2, Ar–H2 and Ar–HF systems, and compar-
ing the potential energy curves obtained with the best
available reference data for each system (sections 3.2
and 3.3). These systems are chosen as they are weakly
bound complexes bound mainly by dispersion forces,
but with induction forces playing an increasing role
from Ar2 to Ar–HF. The SIMPER-1 method was
found to fail at short range for all three dimers, so
they are of immediate interest for testing the new
approaches. The extensive body of experimental
data from high-resolution microwave [7–9] and
infrared [10–12] spectroscopy has made it possible
to determine reliable empirical potentials for Ar2
[13], Ar–H2 [14] and Ar–HF [15, 16], which are used
to assess the results.

2. Theory

An outline of how each component of the total
interaction energy is treated in the SIMPER-1 approach
and how the different interaction energy contributions
are extrapolated, is given in section 2.1. The difficulties
which emerge when the SIMPER-1 routine is used at
small intermolecular separation are discussed in section
2.2. These are associated with the use of the Coulomb
approximation. Two methods to prevent the Coulomb
collapse are then presented. The first method, SIMPER-
1K (section 2.3), is based on solution of the Schrödinger
equation in the Coulomb approximation. In this
approach, in order to prevent the Coulomb collapse
an extra ‘charge density overlap’ operator is added
to the interaction Hamiltonian. The second method,
SIMPER-1P (section 2.4), treats the problem of
calculating the Coulomb energy perturbatively to finite
order, rather than infinite order.

568 E. Bichoutskaia et al.
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2.1. SIMPER-1 methodology
In the SIMPER-1 approach [5], the intermolec-

ular potential energy surface is first divided into
a short-range exchange-repulsion interaction energy,
Eexch, and a Coulomb interaction energy, ECoul,
dominating at long range.
The Coulomb interaction energy between the mole-

cules is obtained by performing a modified super-
molecule calculation, where the monomer energies are
calculated using monomer-centred basis sets and the
dimer wavefunction is expanded in simple product
functions, which are not antisymmetrized between
electrons on the different molecules:

 Coulð1, . . . , nÞ

¼
X
a, b

 A
a ð1, . . . , nAÞ �  B

b ðnA þ 1, . . . , nÞ: ð1Þ

Here nA is the number of electrons of A and n is the total
number of electrons in the AB dimer. In a self-consistent
field (SCF) calculation, this ‘SCF Coulomb’ wavefunc-
tion is a simple product of two determinants and the
molecular orbitals are chosen to minimize the energy
in the usual way. In second-order Møller–Plesset per-
turbation theory (MP2), the Coulomb wavefunction
also includes products of doubly excited determinants
of A (B) with the SCF determinant of B (A),
and products of singly excited determinants of both
A and B; the molecular orbitals and orbital
energies are taken from the SCF Coulomb wavefunction
and the amplitudes are obtained from the usual MP2
procedure.
The exchange-repulsion interaction energy Eexch is

defined as the difference between the counterpoise-
corrected supermolecular interaction energy Eint

and the Coulomb interaction energy ECoul, and
the Coulomb interaction energy is further sepa-
rated into different contributions using perturbation
theory:

Eint ¼ Eexch þ ECoul

¼ Eexch þ E
ð1Þ
Coul þ E

ð2Þ
disp þ Erest

Coul

� �
, ð2Þ

where E
ð1Þ
Coul is the first-order Coulomb interaction

energy calculated from the unperturbed ground-state
charge densities, E

ð2Þ
disp is the second-order dispersion

energy and Erest
Coul contains the induction energy, E

ð2Þ
ind,

and higher-order contributions.
The intermolecular exchange-repulsion energy is

extrapolated using the charge density overlap model
[17], assuming that the ratio of the exchange-repulsion
energy and the charge-density overlap integral, S�, is
a function of the intermolecular geometry, but not the

level of theory:

Ehigh
exchðR, �Þ � Elow

exchðR, �Þ �
Shigh
� ðR, �Þ

Slow
� ðR, �Þ

, ð3Þ

S�ðR, �Þ ¼

Z
�AelðrÞ�

B
elðrÞ dr, ð4Þ

where ðR, �Þ denotes the intermolecular geometry and
�AelðrÞ and �BelðrÞ are unperturbed ground state electron
densities.

The intermolecular dispersion energy is written as a
damped multipolar series:

E
ð2Þ
disp ¼ �

X
n

Cn � fnðbRÞ � R�n, ð5Þ

where b is the scaling parameter in the Tang–Toennies
damping function [18] fnðbRÞ (an incomplete gamma
function of order nþ 1). At the ‘low’ level of theory, this
parameter is determined uniquely at each point on the
potential energy surface from the ‘low’ level dispersion
energy and the ‘low’ level dispersion energy coefficients.
The damping functions are then extrapolated by assum-
ing [19] that the scaling parameter, b, is proportional to
ðC6=C8Þ

1=2, such that

bhigh �
Chigh

8

Chigh
6

 !1=2

� blow �
Clow

8

Clow
6

� �1=2

: ð6Þ

For the atom–diatom systems, Ar–HF and Ar–H2, the
dispersion energy coefficients are anisotropic and can
be evaluated for each intermolecular angle by expanding
in Legendre polynomials [15]. The improved scaling
parameter, bhigh, obtained at each point on the potential
energy surface is used together with the more accurate
‘high’ level dispersion energy coefficients, Chigh

n , to
extrapolate the dispersion energy using equation (5).

The first-order Coulomb interaction energy is
obtained at ‘low’ and ‘high’ levels of theory from the
appropriate one-electron density matrices. The ‘low’
level E

ð1Þ
Coul is simply replaced by the ‘high’ level E

ð1Þ
Coul in

equation (2).
The resulting SIMPER-1 interaction energy is the

sum of the extrapolated exchange-repulsion and disper-
sion energies, the high-level first-order Coulomb energy
and the higher-order Coulomb energy, Erest

Coul, which is
not extrapolated. The SIMPER-1 extrapolation is
therefore a true ab initio method, which requires no
fitting parameters at any stage of the procedure.

2.2. The Coulomb collapse
In the ‘Coulomb’ or ‘polarization’ approximation (1),

the wavefunction  Coul is made from functions which
do not satisfy the Pauli principle for all n electrons of the
complex. The function  A

a ð1, . . . , nAÞ is antisymmetric

Intermolecular potential energy extrapolation method for weakly bound systems 569
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with respect to the permutation of electrons ð1, . . . , nAÞ,
and  B

b ðnA þ 1, . . . , nÞ is antisymmetric with respect to
the permutation of electrons ðnA þ 1, . . . , nÞ. By defini-
tion, their product has the same properties, but has
no extra symmetry with respect to the intermolecular
exchanges, i.e. those exchanging electrons between the
sets ð1, . . . , nAÞ and ðnA þ 1, . . . , nÞ.
Use of the Coulomb approximation is not correct,

because it fails to describe exchange-repulsion interac-
tions, which tend to increase exponentially as the inter-
molecular separation decreases. Although the Coulomb
approximation works sufficiently well at long range,
exchange-repulsion dominates at short intermolecular
distances.Asa result of violationof thePauli principle, the
Coulomb interaction energy ‘collapses’ when the mole-
cules approach each other and acquires physically unreal
negative values (see figure 1 and note the change of scale).
Two different ways to overcome the Coulomb collapse

problem are now investigated. The SIMPER-1K method
involves adding a charge-overlap pseudopotential to the
Hamiltonian, calculating the Coulomb energy, then
correcting it to second order in the pseudopotential. The
SIMPER-1P method involves calculating the Coulomb
energy using intermolecular perturbation theory and
truncatingtheresultingexpansionatsecondorthirdorder.

2.3. Pseudopotential method (SIMPER-1K)
The total Hamiltonian of the complex is denoted

as H. A zero-order Hamiltonian H0 is introduced as the
sum of the Hamiltonians Hi of the isolated molecules i:

H0ð1, . . . , nÞ ¼ HAð1, . . . , nAÞ þHBðnA þ 1, . . . , nÞ, ð7Þ

where the operator HA acts only on the coordinates of
the electrons and nuclei of molecule A, and similarly for
HB. The interaction operator V is then

V ¼ H �H0 ¼ H � ðHA þHBÞ: ð8Þ

In the Coulomb approximation, at small intermolec-
ular separations, the electrons of molecule A are
influenced by the ‘Coulomb’ potential of molecule B
and can be unphysically transferred onto molecule B.
In order to discourage charge transfer between the
molecules, we add an extra ‘charge density overlap’
operator Veff ðKÞ ¼ K � ŜS� to the interaction operator
V, where

ŜS� ¼
X
jðAÞ

X
jðBÞ

� rjðAÞjðBÞ

� �
ð9Þ

and jðAÞ, jðBÞ are the electron coordinates of molecules
A and B.

The Coulomb wavefunctions at SCF level,  K
Coul, SCF,

and at correlated (MP2) level,  K
Coul,MP2, are then

calculated in the same way as described previously
(equation (1) and accompanying text), with the addi-
tional Veff ðKÞ operator included in the Hamiltonian.
The Coulomb wavefunction and the corresponding
Coulomb interaction energy, EK

Coul, depend on the
parameter K. In the region of the potential where no
‘Coulomb collapse’ occurs, this (weak) dependence on K
is unwanted and perturbation theory is used to remove
it. The operator Veff ðKÞ is treated as the perturbation
and all terms in the SCF Coulomb energy, which are
first-order or second-order in the parameter K, are

Figure 1. The SCF Coulomb interaction energy ECoul,SCF for Ar2 dimer as a function of the Ar–Ar interatomic separation R,
showing the ‘Coulomb collapse’ at R � 5:7 atomic units. The results are obtained with the aug-cc-pVTZ basis set.

570 E. Bichoutskaia et al.
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removed. This is done at all points on the potential
energy surface, including those for which Coulomb
collapse would occur at K¼ 0. The expression for the
Coulomb interaction energy used in SIMPER-1K is
therefore

ECoul ¼ EK
Coul � h K

Coul, SCFjVeff ðKÞj K
Coul,SCFi

þ
1

2
h K

Coul,SCFj½�
ð1ÞðKÞ,Veff ðKÞ�j K

Coul, SCFi, ð10Þ

where the operator �ð1ÞðKÞ is defined as the usual first-
order orbital rotation operator resulting from the
perturbation Veff ðKÞ. It is found from the response
equation

h K
Coul, SCFj½X , ½�ð1ÞðKÞ,H þ Veff ðKÞ��j K

Coul, SCFi

þ h K
Coul,SCFj½X ,Veff ðKÞ�j K

Coul, SCFi ¼ 0, ð11Þ

where X is an arbitrary single (de-)excitation operator.
Equation (10) only includes the effect of the pseudo-
potential on the SCF Coulomb energy. Its effect on the
MP2 contribution to the Coulomb energy is much
smaller, but may be considered in future work.

2.4. Perturbation expansion method (SIMPER-1P)
In SIMPER-1P, the Coulomb interaction energy is

found perturbatively to a fixed order. This approach is
based on the observations that, at medium to large
separations, the unphysical charge transfer effects are
almost entirely the result of higher-order terms in the
polarization expansion, and truncation of the expansion
at finite order recovers the major part of the ‘physical’
Coulomb interaction energy. Knowledge of the first-
order perturbed wavefunction enables Coulomb inter-
action energies to be calculated to third order, and the
exchange-repulsion energy is then calculated as the
difference between the finite-order Coulomb interaction
energy and the counterpoise-corrected total interaction
energy.
The method for calculating finite-order Coulomb

interaction energies is formulated using static response
theory. The general expression for the SCF energy is

ESCF ¼ hCjJjCi, ð12Þ

where jCi is the product of two ground-state SCF
wavefunctions of monomers A and B in the absence
of interaction and the effective Hamiltonian J is defined
as [20]

J ¼ exp ð��ÞH exp ð�Þ, ð13Þ

where � is the orbital rotation operator resulting from
the intermolecular perturbation. In general, � is
obtained from the condition

@ESCF

@�X
¼ 0, ð14Þ

which leads to the response equation for �ð1Þ at first
order in V:

hCj½X , ½�ð1Þ,Hð0Þ��jCi þ hCj½X ,V �jCi ¼ 0: ð15Þ

It should be noted that elements of the orbital rotation
operator corresponding to occupied–occupied and
virtual–virtual transformations are zero. In the
Coulomb approximation, � is a sum of operators
restricted to the monomer subspaces.

The effective Hamiltonian is further expanded in
powers of the perturbation [20]:

J ð1Þ ¼ V þ �ð1Þ,Hð0Þ
� �

, ð16Þ

J ð2Þ ¼
1

2
�ð1Þ, �ð1Þ,Hð0Þ

� �� �
þ �ð1Þ,V
� �

, ð17Þ

J ð3Þ ¼
1

6
�ð1Þ, �ð1Þ, �ð1Þ,Hð0Þ

� �� �� �
þ
1

2
�ð1Þ, �ð1Þ,V

� �� �
: ð18Þ

In the SCF approximation, the Coulomb interaction
energy can then be obtained [20] as the expectation
value of the effective Hamiltonian at a given order of
perturbation. The first-order Coulomb energy is

E
ð1Þ
Coul, SCF ¼ hCjV jCi: ð19Þ

It corresponds to the interaction of two unper-
turbed charge distributions. The second-order Coulomb
energy is

E
ð2Þ
Coul, SCF ¼

1

2
hCj �ð1Þ,V

� �
jCi ð20Þ

and corresponds to the second-order induction. The
third-order Coulomb energy is

E
ð3Þ
Coul, SCF ¼

1

6
hCj �ð1Þ, �ð1Þ, �ð1Þ,Hð0Þ

� �� �� �
jCi

þ
1

2
hCj �ð1Þ, �ð1Þ,V

� �� �
jCi ð21Þ

and corresponds to the third-order induction or
hyperpolarization plus the interaction between two
polarized charge densities.

The same technique can be applied when electron
correlation is taken into account. For non-variational
wavefunctions, such as MP2, CCSD, CCSD(T) etc.,
Lagrange’s method of undetermined multipliers can
be applied to construct an energy functional which is
variational in all parameters.

For example, the MP2 correlation energy is expressed
as

EMP2 ¼ htjJjCi, ð22Þ

where jti is a linear combination of doubly excited
determinants with the restriction that all excitations

Intermolecular potential energy extrapolation method for weakly bound systems 571
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of individual electrons are restricted to monomer
subspaces:

jti ¼
X
�

t�j�i:

The amplitudes t� must satisfy the equation

�hCjJj�i ¼
X
�

t�h�jF
ifJg � ESCFj�i, ð23Þ

whereF ifJg is the inactiveFockoperator [21]ofoperatorJ
and corresponds to the zero-order Hamiltonian in
Møller–Plesset theory. The general expression for the
MP2 correlation energy Lagrangian is therefore [20, 22]

EMP2 ¼ 2htjJjCi þ htjF ifJg � ESCFjti þ hCj½�, J�jCi,

ð24Þ

where the last term is required to fulfil the Brillouin
condition and � is a sum of single excitations with
amplitudes defined by Lagrange multipliers.
The values of �ð1Þ defined by (15) are used in

calculating the MP2 energies. Making the Lagrangian
stationary with respect to t� and expanding in powers
of V gives expressions for the zero-order amplitudesX

�

tð0Þ� h�jF i Hð0Þ
	 


� E
ð0Þ
SCFj�i ¼ �hCjHð0Þj�i ð25Þ

and the first-order amplitudesX
�

tð1Þ� h�jF i Hð0Þ
	 


� E
ð0Þ
SCFj�i

¼ �hCjJ ð1Þj�i � h�jF i J ð1Þ
	 


� E
ð1Þ
Coul, SCFjt

ð0Þi: ð26Þ

Expressions for the zero-order and first-order Lagrange
multipliers � are obtained in a similar way, by making
the Lagrangian stationary with respect to �.
The MP2 Coulomb interaction energies at different

orders are then obtained by expanding the Lagrangian
in powers of V [20]:

E
ð1Þ
Coul,MP2 ¼htð0ÞjF ifVg�E

ð1Þ
Coul,SCFjt

ð0ÞiþhCj½�ð0Þ,V �jCi,

ð27Þ

E
ð2Þ
Coul,MP2 ¼ 2htð0ÞjJð2ÞjCiþhtð1ÞjJ ð1ÞjCiþ htð1ÞjF i Jð1Þ

	 

�E

ð1Þ
Coul,SCFjt

ð0Þiþ htð0ÞjF i J ð2Þ
	 


�E
ð2Þ
Coul,SCFjt

ð0Þiþ hCj �ð0Þ,J ð2Þ
� �

jCi, ð28Þ

E
ð3Þ
Coul,MP2 ¼ 2htð0ÞjJð3ÞjCiþ2htð1ÞjJ ð2ÞjCiþ2htð0ÞjF i Jð2Þ

	 

�E

ð2Þ
Coul,SCFjt

ð1Þiþ htð0ÞjF i J ð3Þ
	 


�E
ð3Þ
Coul,SCFjt

ð0Þi

þ htð1ÞjF i J ð1Þ
	 


�E
ð1Þ
Coul,SCFjt

ð1Þi

þ hCj �ð0Þ,Jð3Þ
� �

jCiþhCj �ð1Þ,J ð2Þ�
� ��Ci:

ð29Þ

3. Results and discussion

3.1. Choice of parameter K in SIMPER-1K
In the SIMPER-1K approach, the total Hamiltonian

of the interacting system, H(K ), depends on the external
parameter K, which appears in the additional ‘charge
density overlap’ operator Veff. In this work, K¼ 3 is
used for the following reason. Figure 2 shows, in the
SIMPER-1K approach, the dependence of the SCF
Coulomb interaction energy on the value of parameter
K for the Ar2 dimer at an interatomic separation of
R¼ 5 atomic units. For this system, R¼ 5 atomic units
lies well inside the region of the ‘Coulomb collapse’
(see figure 1). The uncorrected SCF Coulomb inter-
action energy (K¼ 0) at R¼ 5 atomic units therefore
has an unphysically low value of ECoul, SCF � �835�
103 cm�1. As the value of K increases, the amount of
unphysical ‘charge transfer’ decreases, until, when K is
greater than a critical value of about two atomic units,
the uncorrected Coulomb energy becomes stable at
approximately 2� 103cm�1, as shown by the square
symbols in figure 2.

Two corrections to the modified Coulomb energy
with respect to K are also presented in figure 2. The
correction to first order is represented by circles and
corresponds to the first two terms in equation (10), and
the correction to second order (the whole expression
(10) for the corrected Coulomb energy) is shown by
stars. These lines clearly define a lower limit in K for
validity of the SIMPER-1K approach. For the Ar2
dimer, the lowest value of parameter K that could
be used is two atomic units. A similar investigation for
the remaining two systems gave similar results and it is
suggested that a suitable value for K is three atomic
units. This value of K is expected to be valid for most
closed-shell dimers until well inside the equilibrium
separation.

3.2. Calculations on Ar2, Ar–H2 and Ar–HF dimers
Interaction energies are calculated for each of the

three systems using the SIMPER-1K and SIMPER-1P
methods, and the ab initio MP2 and CCSD(T) super-
molecule methods. The full counterpoise correction of
Boys and Bernardi [23] is applied to the supermolecule
calculations, which are done using Molpro [24].

In the SIMPER-1K method, as in the supermolecule
calculations, the core orbitals are frozen. MP2 theory
is used as a ‘low’ level of dimer calculation, i.e. the
exchange-repulsion and Coulomb interaction energies
are obtained at the MP2 supermolecule level and the
results are combined with quantities obtained from
higher levels of theory in order to estimate potential
energy surfaces with better accuracy. The CCSD theory
is used as the ‘high’ level to calculate monomer charge
densities, which are then used to obtain charge density
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overlap integrals and first-order Coulomb interaction
energies. Time-dependent configuration interaction with
single and double substitutions, TD-CISD, is used to
calculate dispersion energy coefficients. The method
described in section 2.3 is used to obtain the SCF
Coulomb interaction energy corrected to second order
in the SCF charge density overlap. At K¼ 0 (SIMPER-
1) the ‘Coulomb collapse’ occurs at short internuclear
distances for the Ar2 dimer (R � 5:7 atomic units) and
near the equilibrium for the Ar–H2 and Ar–HF systems
(R � 6:5 atomic units).
In the SIMPER-1P approach, for technical reasons

all electrons are correlated. In contrast to SIMPER-1K
the method is not iterative and is expected to be faster
for large systems. Coulomb interaction energies are
calculated at the MP2 level to second or third order in V
(SIMPER-1P-2, SIMPER-1P-3) and the exchange energy
is defined as the difference between the counterpoise-
corrected MP2 interaction energy and the Coulomb
interaction energy in each case. As for SIMPER-1K, the
first-order Coulomb energy and the exchange-repulsion
energy are corrected using CCSD charge densities, and
the dispersion energy is corrected using TD-CISD
dispersion energy coefficients.
To obtain the dispersion energy accurately, the

choice of basis set is important. The general-purpose
correlation-consistent basis sets of Dunning and
co-workers are widely used in the standard (cc-pVXZ)
and augmented (aug-cc-pVXZ, d-aug-cc-pVXZ) forms
from double-� (X=D) to quintuple-� (X=5) [25]. In an
attempt to improve basis sets for weak intermolecular

interactions, some authors include a few ‘bond-centred’
basis functions, located at or near the midpoint of the
van der Waals bond and find it to be an effective way
to recover most of the dispersion energy without
needing basis functions with excessively large orbital
angular momentum quantum numbers [26]. The basis
set description can also be improved by shifting the
exponents of the polarization functions. For the H (Ar,
F) atoms, the exponents of each set of basis functions
with angular momentum l � 2 (l � 3) are shifted to
match the most diffuse p (d) functions [27]. This method
is favoured by our group, because it performs equally
well, has basis functions located only on nuclei and
requires fewer basis functions. In this work the
SP-AV5Z basis sets are used, obtained from the
aug-cc-pV5Z basis sets of Dunning [28].

A polar coordinate system is used to define the
geometries. The vector from the Ar atom to the F
nucleus in HF, or to the H–H bond centre in H2, is
denoted as R and has length R. The angle between R

and the FH (or HH) direction is �, which is zero at the
linear Ar–F–H (or Ar–H–H) geometry.

3.3. Discussion
The calculated interaction energies are shown in

tables 1–3, where the best available reference data for
each system are also presented. In table 4 different
contributions to the total energy at the potential minima
are shown.

Overall, the MP2 method works better for the systems
discussed in this paper than for those containing He or

Figure 2. Modified SCF Coulomb interaction energy, EK
Coul,SCF, and corrections to second order of the parameter K, for the Ar2

dimer. Squares: EK
Coul,SCF. Circles: E

K
Coul, SCF plus the first-order correction (the second term in equation (10)). Stars: EK

Coul,SCF
plus the first-order and second-order corrections (the second and third terms in equation (10)). The energies are calculated at
R¼ 5 atomic units, with the SP-AV5Z basis set.
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Ne atoms (see [5]). The accuracy in the binding energy
obtained with the MP2 method for the Ar2 dimer is
about 9% compared to the semi-empirical HFDID1
potential of Aziz [13]. For the T-shaped Ar–H2 dimer, it
is 12% compared to the XC (fit) potential of Bissonnette
et al. [14]. Near the equilibrium geometry, the accuracy
of the MP2 results is about 15% for linear Ar–F–H
(� ¼ 0�) and 14% for linear Ar–H–F (� ¼ 180�),
compared to the H6(4,3,2) potential of Hutson [15].
However, for the He2 dimer, for example, the error in
the MP2 results is about 37% compared to an accurate
non-relativistic Born–Oppenheimer calculation [30].
Even though MP2 is a better starting point for these

dimers, the SIMPER methods still improve the MP2
potentials. For Ar2 (see table 1), SIMPER-1P shows
a good agreement with the reference potential of Aziz
[13], within about 2%, and for the SIMPER-1K
method, the difference is less than 6%. Next, the two
SIMPER methods are compared with the most
accurate (and computationally expensive) super-
molecule method currently available, CCSD(T). The
SIMPER-1K binding energy agrees with the CCSD(T)

binding energy within 0.5%, whereas the SIMPER-1P
result differs by about 3%. Note that the MP2
approach, using an amount of computational time
similar to SIMPER, gives a 15% difference from the
CCSD(T) method.

Table 2 shows the calculated interaction energies
for the Ar–H2 dimer. For this system, both SIMPER-1K
and SIMPER-1P improve the accuracy of the potential
equally well for linear and T-shaped geometries, to
about 5% compared to the XC (fit) potential of
Bissonnette [14] and to about 2% compared to the
CCSD(T) results.

The main source of binding in the Ar2 and Ar–H2

dimers is the dispersion energy, while for the Ar–HF
dimer the situation is more complicated. It can be seen
from table 4 that in the � ¼ 0� linear geometry, Ar–F–H,
dispersion forces still dominate, but in the � ¼ 180�

linear geometry, Ar–H–F, the induction energy makes
a large contribution to the interaction energy. In
general, the more the induction energy contributes to
the interaction energy, the more discrepancy between
the SIMPER results and experiment one can expect. The

Table 1. Interaction energies Eint for Ar2 dimer, obtained with the SP-AV5Z basis set using different methods. The Ar–Ar
separation R is in atomic units.

Eint/cm
�1

R MP2 CCSD(T) SIMPER-1K SIMPER-1P-2 SIMPER-1P-3 Ref. [13]

5.00 3320.09 3465.77 3594.55 3561.78 3303.11 3053.91

6.00 192.65 236.15 252.18 246.27 231.23 188.19

7.00 �108.09 �92.37 �91.49 �94.59 �95.15 �98.69

7.11 �108.74 �94.49 �94.00 �97.03 �97.43 �99.55

7.25 �106.65 �94.20 �93.97 �96.81 �97.07 �97.99

8.00 �76.56 �69.58 �70.06 �72.06 �72.09 �70.07

9.00 �40.25 �36.63 �36.55 �37.92 �37.92 �36.24

10.00 �20.90 �18.87 �18.86 �19.47 �19.47 �18.52

Table 2. Interaction energies Eint for Ar–H2 dimer, obtained with the SP-AV5Z basis set using different methods. The angle � is
given in degrees; R is in atomic units.

Eint/cm
�1

R � MP2 CCSD(T) SIMPER-1K SIMPER-1P-2 SIMPER-1P-3 Ref. [14]

5.00 0.0 933.07 950.73 1015.47 992.42 988.11 916.04

6.00 0.0 20.88 22.65 26.73 25.01 23.71 10.73

6.70 0.0 �51.71 �51.81 �52.76 �52.92 �53.25 �55.81

7.00 0.0 �52.56 �52.86 �54.17 �54.24 �54.40 �55.36

9.00 0.0 �16.77 �16.83 �17.24 �17.35 �17.35 �17.09

5.00 90.0 685.86 673.99 699.57 719.39 717.43 630.02

6.00 90.0 9.80 4.71 5.96 9.03 8.37 �3.31

6.70 90.0 �41.86 �44.71 �45.42 �44.83 �44.99 �47.68

7.00 90.0 �41.88 �44.11 �44.90 �44.70 �44.78 �46.14

9.00 90.0 �13.36 �13.76 �14.89 �14.12 �14.12 �14.06
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reason is that in the SIMPER-1 approach the induction
energy is not improved, although it is believed that a
higher-level treatment may change the value of the induc-
tion energy significantly; efficient methods for doing this
are currently being investigated. In the T-shaped
geometry of the Ar–HF dimer, the SIMPER well
depth differs from the H6(4,3,2) potential of Hutson
[15] by about 2%, which increases to 4% for SIMPER-
1K for the linear Ar–H–F geometry (table 3). In the case
of the linear Ar–F–H geometry, both SIMPER methods
differ by 9% from the H6(4,3,2) potential.

For the three systems, the SIMPER approach per-
forms well at long and intermediate distances, which is
an argument in favour of the dispersion energy model
chosen in the current version of SIMPER. At short
distances, the induction component of the interaction
energy becomes significant and, therefore, the correction
of this component is more important. In the SIMPER-
1P approach, the contribution of higher-order energies
in the perturbation expansion of the Coulomb energy
may be another source for the discrepancies in the
resulting interaction energies. This might be important

Table 3. Interaction energies Eint for the Ar–HF dimer, obtained with the SP-AV5Z basis set using different methods. The angle �
is given in degrees and R is in atomic units. The angle �¼ 0� corresponds to the Ar–F–H linear geometry and �¼ 180� to the
Ar–H–F linear geometry.

Eint/cm
�1

R � MP2 CCSD(T) SIMPER-1K SIMPER-1P-2 SIMPER-1P-3 Ref. [15]

5.00 0.0 596.46 600.86 586.18 580.82 558.85 872.95

5.50 0.0 57.99 56.15 46.19 44.60 39.79 92.98

6.00 0.0 �77.06 �79.71 �85.47 �85.97 �86.97 �89.58

6.32 0.0 �91.33 �93.64 �97.63 �97.94 �98.34 �107.47

7.00 0.0 �72.55 �73.80 �75.67 �75.89 �75.98 �83.35

9.00 0.0 �18.72 �18.74 �18.98 �19.06 �19.08 �20.10

5.00 90.0 1074.81 1035.09 1003.49 983.97 888.51 1022.42

6.00 90.0 0.94 �19.38 �27.84 �30.12 �35.94 �34.34

6.53 90.0 �62.26 �74.98 �84.32 �79.97 �81.29 �82.90

7.00 90.0 �62.98 �71.19 �73.44 �73.88 �74.23 �75.74

9.00 90.0 �18.62 �19.89 �20.10 �20.15 �20.15 �20.70

5.00 180.0 2780.85 2831.70 2648.63 2638.77 2387.65 2685.63

6.00 180.0 �67.35 �76.29 �127.35 �124.67 �147.06 �116.69

6.40 180.0 �186.32 �196.65 �224.73 �223.47 �232.32 �216.23

7.00 180.0 �174.52 �182.34 �193.71 �193.68 �196.13 �190.64

9.00 180.0 �41.21 �42.35 �43.25 �43.50 �43.53 �45.72

Table 4. Coulomb interaction energies and associated data at intermolecular separations R near the equilibrium values Re.
All energies are given in cm�1, distances R and Re are in atomic units. The SIMPER-1K data are denoted by (1K) and the
SIMPER-1P data by (1P). The calculations, and the ‘low’ and ‘high’ levels of theory, are described in the text.

Ar–H2 Ar–HF

Ar2 �¼ 0.0� �¼ 90.0� �¼ 0.0� �¼ 90.0� �¼ 180.0�

Re [reference] 7.10 [13] 6.7 [14] 6.7 [14] 6.32 [29] 6.53 [29] 6.406 [29]

R 7.11 6.70 6.70 6.32 6.53 6.40

E
ð1Þ
Coul;low �44.70 �29.10 �20.64 �43.76 �51.18 �99.51

E
ð1Þ
Coul;high �42.19 �28.45 �19.44 �40.87 �46.45 �93.21

E
ð1Þþð2Þ
Coul;lowð1PÞ �272.96 �176.54 �128.45 �239.29 �238.44 �812.28

E
ð1Þþð2Þþð3Þ
Coul;low ð1PÞ �280.94 �193.89 �136.91 �246.39 �254.80 �994.23

ECoul,low (1K) �277.91 �189.89 �136.09 �232.95 �227.48 �856.31

E
ð2Þ
disp;low �215.92 �132.70 �101.65 �175.46 �159.09 �330.98

E
ð2Þ
disp;high �195.24 �131.76 �102.64 �176.82 �172.83 �343.62

S�,high/S�,low 0.95 0.98 0.96 0.94 0.92 0.95
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when going beyond the first-order response of the
wavefunction (the third-order interaction energy), but
as tables 1–3 show, truncation at second order in the
Coulomb energy does not change the results of the
extrapolation procedure significantly, compared to
truncation at third order. The largest difference is for
the linear Ar–H–F geometry, where the extrapolated
SIMPER-1P-3 potential is 4% lower than the SIMPER-
1P-2 potential at the minimum. This difference is due
to the fact that the Coulomb contribution is the largest
for this geometry and the exchange-repulsion energy,
obtained as the difference between the total super-
molecule energy and the finite-order Coulomb energy, is
‘contaminated’ by higher-order induction contributions.
This ‘contamination’ is greater for SIMPER-1P-2 and
it is surprising, therefore, that it gives better agreement
with experiment than SIMPER-1P-3. This fact will need
further investigation.

4. Summary

Two methods, SIMPER-1K and SIMPER-1P, for
improving supermolecule calculations of the intermole-
cular potential energy are described. Both methods
successfully resolve the issue of ‘Coulomb collapse’
occurring in the Coulomb approximation. The methods
are applied to Ar–Ar, Ar–H2 and Ar–HF complexes,
and show excellent agreement with experimentally
derived intermolecular potentials for the three systems.
The cost of both methods is approximately equal to
MP2, but the agreement with experiment is similar to, or
better than, CCSD(T). There are some further improve-
ments to SIMPER which can be considered. Scaling
of the second-order induction component of the inter-
action energy is required for interactions involving ions
or polar molecules; here, the knowledge of high-level
non-expanded induction energies and accurate charge
densities is important. It may also be useful to investi-
gate the possibility of a complete basis set extrapolation
of the SIMPER interaction energy. Finally, it is empha-
sized that the SIMPER theories produce a useful
decomposition of the interaction energy into different
contributions, and that the extrapolation methods
used are general and can be applied to a wide variety
of ‘low-level’ calculation methods.

This work was funded by the Engineering and
Physical Sciences Research Council (EPSRC) and by
the University of Nottingham.
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