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Virial coefficients up to the seventh are calculated for pair potentials depending on inverse powers of separation,
for inverse powers from 5 to 80. Unlike the limiting (infinite inverse power) hard-sphere potential, some
virial coefficients for finite inverse power potentials are found to be negative. This makes resummation of
the virial series for general inverse power potentials more difficult than that for hard spheres, and some
alternative resummation methods are presented and compared. A general equation of state is proposed for
fluids of particles interacting through inverse power pair potentials, for inverse powers greater than about 10.
This includes the “molecular” inverse power of 12, for which the current results support and extend the
results of previous studies.

I. Background

The inverse power potential

with ε > 0 andσ > 0, describes repulsion between spherical
particles of “hardness”n separated by a distanceR. Whenn )
∞, the particles are hard spheres of diameterσ. Other values of
n can be used to describe excluded volume effects in real
systems such as powders and colloids (largen), molecular
liquids (n ≈ 12), and liquid alkali metals (smalln).1,2 Theoretical
work on inverse power systems has included investigations of
the phase behavior,3-7 the liquid/solid interface,8 and the
fluid.9-15

The aim of this paper is to present some new methods for
obtaining the thermodynamic equation of state for general
inverse power fluids. The equation of state is useful in
developing and testing theories of the fluid state and in
predicting phase transitions. The approach taken in this paper
differs from that of previous work, which is mainly based on
perturbation theory,2,16-20 in that the virial coefficients are used
here to obtain the equation of state. This can be done for any
hardnessn for which the virial coefficients are known. However,
there are few published virial coefficients, except for the limiting
hard-sphere fluid. Even for the popularn ) 12 potential, only
the first five virial coefficients have been calculated explicitly.21

This work therefore consists of two parts. The calculation of
virial coefficients for a range of different inverse power
potentials is described first, followed by initial attempts to
combine these data into a general equation of state.

II. Virial Coefficients

For the inverse power potential defined in eq 1, if the reduced
pressure is defined asPh ) Pâσj3 and the reduced density isFj )
Fσj3, whereP is pressure,F is number density,â ) (kBT)-1,
and σj ) σ(âε)1/n, then Ph is a function of Fj, but not of
temperature, for each hardnessn.22 The virial series for the
reduced pressure is

where the reduced virial coefficientsBhm ) Bmσj3-3m depend on
the hardnessn, but not on temperature. The first two virial
coefficients areBh1 ) 1 andBh2 ) (2π/3)Γ(1 - 3/n).

The virial coefficients are calculated from the usual sum of
“diagram integrals”,18 in which each diagram represents an
integral of a product of Mayer’sf-functions over the coordinates
of all the particles but one. For higher virial coefficients (large
m), close cancellation occurs between the different diagram
integrals, and the fractional accuracy in the virial coefficient is
therefore much lower than in each of the diagrams separately.
Two methods are commonly used to tackle this problem.

Method 1 involves using the geometric properties of the
diagrams to reduce the dimensionality of some of the integrals.23

For example, the fifth virial coefficient is a sum of 10 nine-
dimensional integrals, but five of these can be reduced to one-
dimensional integrals and two more can be reduced to six-
dimensional integrals. The lower-dimensional integrals can be
evaluated more accurately, so the uncertainty in the virial
coefficient depends only on a few high-dimensional integrals.

Method 2 involves reducing the number of independent
sources of error by using the same numerical integration scheme,
with the same points and weights, to evaluate all the different
integrals. All the separate integrals are therefore combined into
an integration of a single function.24 Cancellation between
diagrams with positive and negative values at the same point
in multidimensional space is thereby taken into account ef-
ficiently, although cancellation still arises between positive and
negative values in different regions of space.

These two methods are mutually exclusive, since all integrals
treated by the second method must have the same dimensional-
ity. In this work, the virial coefficients up to the fifth are
evaluated using method 1, and the sixth and seventh virial
coefficients are evaluated using a combination of method 2 for
most of the integrals and method 1 for the remainder.

Integrals using method 1 are evaluated in several different
ways. First, two sets of geometric variables are tried:{r12, r13,
r23, (r1j, r2j, r3j, j g 4)} and{r12, r3, cosθ3 (rj, cosθj, φj, j g
4)}, whererij is the distance between the centers of particlesi
and j, and (rj, cos θj, φj) define the position of particlej in
spherical polar coordinates relative to the center of mass of all
spheresi wherei < j and spheresi and j are “connected” by a

E ) ε(R/σ)-n (1)

Ph ) ∑
m)1

BhmFjm (2)
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Mayer f-function. For the first set of geometric variables it is
also necessary to consider separately the cases where particlej
(j > 4) is on the same side as particle 4, or not, of the plane
defined by particles 1-3. The radial geometric variablesrij and
ri are then transformed to integration variablessij andsi. The
geometric variables (cosθ, φ) are used as integration variables
without transformation. Two sets of integration variabless are
tried: {s ) r2, r e 1; s ) (n - 2r2-n)/(n - 2), r > 1} and{s
) π/4 + (1/2) sin-1[(2r2 - rmax

2 - rmin
2 )/(rmax

2 - rmin
2 )]}, where

rmin andrmax are the limits of the radial variables. These limits
are 0 to∞ for r1j andrj, for r2j they are obtained from a triangle
condition on (r12, r1j, r2j), and forr3j they are obtained from a
tetrahedron condition on (r12, r13, r23, r1j, r2j, r3j). The second
set of integration variables is only tried forr3j f s3j. Finally,
the multidimensional integral is evaluated using either Monte
Carlo or Conroy25 points, in the variablessij or (sj, cosθj, φj).
These methods both enable the standard errors in the integrals
to be estimated, and the methods giving the lowest standard
errors in a certain amount of computer time are then used again
with more integration points, if necessary, to reduce the standard
error below some predetermined value. In general it is found
that Conroy points are superior to Monte Carlo points, typically
by a factor of 5-10 in the standard error, and that the choice
of rij as geometric variables usually works better than spherical
polar coordinates.

Integrals using method 2 are evaluated with a linear spanning
tree. The geometric variables arer12, r23, cosθ3, (rj, cosθj, φj,
j g 4) where (rj, cosθj, φj) define the position of particlej in
spherical polar coordinates relative to particlej - 1, andθ2 )
φ2 ) φ3 ) 0. All diagrams with a factor off(r12) f(r23) f(r34) ...
can be integrated in this way, so the labeling of points in each
diagram is changed to obtain this factor, if possible. The factor
of Πj[f(rj-1,j)rj-1,j

2 ] in the integrand is then removed by a
change of variables fromr to t, where dt ) f(r)r2 dr andt ) 0
whenr ) 0. The transformation betweenr andt is achieved by
table lookup and interpolation. Finally, the integral is evaluated
using Conroy points in the variablest, cosθ, andφ.

The number of diagrams that do not contain a linear spanning
tree, and hence cannot be evaluated using method 2, is 0 of 10
diagrams forB5, 2 of 56 diagrams forB6, and 8 of 468 diagrams
for B7. In previous work, these remaining integrals have been
calculated using additional spanning trees.26,27 In fact, all such
diagrams can be efficiently treated using method 1, using the
same scheme as described above. ForB6, the two integrals are
both one-dimensional. ForB7, six of the integrals are one-
dimensional and two are six-dimensional. These eight integrals
are evaluated in about 1 min of computer time with a Compaq
ES40 computer, giving a standard error of about 0.005 in the
reduced virial coefficient. This time and error are both negligible
compared to using method 2 for the other 460 integrals.

The calculated virial coefficients are listed in Table 1. Each
value in the table is typically obtained using at least 100 samples
of about 165 million points each. Significant cancellation of
errors is achieved through using method 2, as expected. The
largest integrals contributing to the seventh virial coefficient
Bh7 are more than 1000 times larger in absolute value thanBh7

itself, and the standard error in the calculated seventh virial
coefficient is about 10 times smaller than the largest standard
errors in the individual integrals, calculated in the same way.

It can be seen that some of the fourth and higher virial
coefficients are negative, even though the potential energy
function is entirely repulsive; this contradicts a prediction that
the virial coefficients for such systems would all be positive.28

For n ) 12, the calculated virial coefficients up to the fifth

agree with previous results21 and improve on their precision,
and are also close to the estimated3 valuesBh6 ) 0.80(2) andBh7

≈ 0, based on molecular simulation data. For “hard” potentials
with largen, the virial coefficients are positive, at least up to
B7, and the convergence of the virial series can be accelerated;
this is investigated further in the next section. For softer
potentials, in particular whenn is between about 8 and 16, the
higher virial coefficients change in sign but are quite small,
and simply truncating the virial series can be better than trying
to accelerate its convergence.21 For lower n, the virial series
oscillates, and higher virial coefficients are relatively large,
especially forn < 6. The use of the virial series is probably
not the best starting point for such soft potentials.

III. The Equation of State

For hard spheres, the infinite series occurring in the virial
expansion of the pressure can be closely approximated by a
rational function. In considering whether the use of a rational
function to sum the virial series might be useful for softer inverse
power potentials, it is helpful to consider first a function that is
known to give satisfactory agreement with the equation of state
of hard spheres

The coefficientsbm are obtained from the corresponding reduced
virial coefficients. For hard spheres, a reasonable choice of the

TABLE 1: Reduced Virial Coefficients Bh m for the Inverse
Power Potential with Hardnessna

n Bh3 Bh4 Bh5 Bh6 Bh7

5 6.62922 -2.18438 1.4702(1) 0.054(26)-7.1(12)
5.25 6.28878 -0.84594 -0.5009(3) 2.890(29) -9.2 (11)
5.5 6.00346 0.13898-1.3886(1) 3.171(22) -5.83(87)
5.75 5.76085 0.87836-1.6947(1) 2.640(19) -3.34(73)
6 5.55200 1.44261-1.6886(1) 1.907(15) -1.62(49)
6.25 5.37027 1.87912-1.5181(1) 1.205(13) -0.71(45)
6.5 5.21066 2.22062-1.2664(1) 0.621(12) 0.74(38)
6.75 5.06933 2.49026-0.9813(1) 0.214(11) 0.87(29)
7 4.94326 2.70474-0.6886(1) -0.089(9) 0.71(25)
7.5 4.72790 3.01424-0.1332(1) -0.405(8) 0.49(21)
8 4.55060 3.21509 0.3493(1) -0.439(7) 0.23(19)
8.5 4.40202 3.34589 0.7425(1) -0.358(7) -0.01(18)
9 4.27564 3.43024 1.0833(1) -0.224(6) -0.01(15)
9.5 4.16682 3.48315 1.3532(1) -0.036(5) -0.08(14)

10 4.07214 3.51443 1.5730(1) 0.143(5)-0.06(14)
11 3.91542 3.53629 1.8980(1) 0.486(4)-0.18(12)
12 3.79107 3.52751 2.1150(1) 0.776(4)-0.03(11)
13 3.69005 3.50371 2.2612(1) 0.995(4) 0.14(10)
14 3.60642 3.47295 2.3602(1) 1.177(4) 0.26(11)
15 3.53609 3.43951 2.4272(1) 1.309(3) 0.59(11)
16 3.47615 3.40566 2.4723(1) 1.415(3) 0.62(11)
18 3.37950 3.34100 2.5215(1) 1.565(3) 0.80(10)
20 3.30505 3.28296 2.5391(1) 1.658(3) 0.89(10)
22 3.24599 3.23201 2.5406(1) 1.712(3) 0.98(8)
24 3.19804 3.18751 2.5338(1) 1.752(3) 1.01(9)
28 3.12496 3.11449 2.5095(2) 1.779(3) 1.14(9)
32 3.07195 3.05769 2.4815(1) 1.793(3) 1.18(9)
36 3.03176 3.01255 2.4546(2) 1.790(3) 1.18(9)
40 3.00026 2.97593 2.4301(2) 1.780(3) 1.12(9)
50 2.94499 2.90912 2.3801(1) 1.766(3) 1.14(9)
60 2.90915 2.86408 2.3428(1) 1.745(3) 1.25(9)
80 2.86546 2.80739 2.2926(1) 1.709(3) 1.11(8)
∞b 2.74156 2.63622 2.12139(2) 1.564(2) 1.103(6)

a Numbers in parentheses give the standard error in the final digit(s).
b Reference 26.

Ph ) ∑
m)1

M

bmFjm/(1 - Fj/Fjc)
2 (3)

7464 J. Phys. Chem. B, Vol. 109, No. 15, 2005 Wheatley



parameterFjc is the reduced density of close-packed spheres,
x2, since the pressure must diverge as the reduced density
increases to this limit. More elaborate rational functions which
have been considered for hard spheres26 also diverge close to
this density. However,Fjc ) 6/π, corresponding to complete
filling of space, is also commonly used.29 This originates from
using the Percus-Yevick approximation in the pressure equation
for hard spheres. In the remainder of this paper, the equation
of state defined by the rational function in eq 3, withFjc ) 6/π
(which is found to give better results thanFjc ) x2), is called
RF1.

For large values of the hardness parametern, accelerating
the convergence of the virial series is important, but for then
) 12 potential, the use of a rational function has been found to
give worse results than simply truncating the virial series,21 and
the same is likely to be true for smallern. This is investigated
in more detail below. To find an equation of state which works
for both large and smalln, it may be useful to note that the
singularity in the pressure represented by the denominator of
the rational function in eq 3 is only physically reasonable for
hard spheres. For all other inverse power potentials, there is no
upper limit on the reduced density. This justifies using a rational
function in which the singularities are moved away fromFj )
Fjc into the complex plane asn decreases from infinity, that is

Expanding this equation in powers of the density up toFjM+1,
and comparing it with the virial series, gives 1+ R2 ) (2BhM/Fjc

- BhM-1/Fjc
2)/BhM+1. If Fjc ) x2 andM ) 5, thenR2 ) 0.08 for

hard spheres, and it increases to about 3.3 asn decreases to 10,
which is approximately the expected behavior. WhenBhM+1

decreases,R increases, and the effect of eq 4 is to switch from
a rational function resummation of the virial series to a simple
truncation. It is interesting that the seventh virial coefficient
predicted from eq 4 withM ) 5, namely,Bh7 ) (2Bh6/Fjc - Bh5/
Fjc

2)/(1 + R2), is within the error of the calculations forn g 10
when Fjc ) x2; even the sign change ofBh7 nearn ) 12 is
predicted correctly. The equation of state defined by the rational
function in eq 4, withFjc ) x2 (which is found to give better
results here thanFjc ) 6/π), is called RF2.

A different equation of state can be obtained using the concept
of a density-dependent effective hard sphere diameter,16 and
relating the compressibility factorZ of an inverse power fluid
to the compressibility factorZHS(x) of a fluid of hard spheres
with reduced densityx and diameterdσ, whered is the reduced
hard sphere diameter, andσ is defined in eq 1. The relationship
used is

Alternatively, the reduced free energy can be used in eq 5 instead
of the compressibility factor, giving a different effective
diameter, but this makes little difference to the quality of the
results.

The effective hard-sphere diameter is then expanded in
powers of the density

and the coefficientsdm are found for each hardnessn by

substituting eq 6 into eq 5 and expanding in powers of the
density up toFjM+2. This gives

and similar equations for higherBhm. From the accurately known
hard-sphere virial coefficients, and the calculated virial coef-
ficients for a particular hardnessn, the coefficientsd0, d1, and
d2 are then obtained from eqs 7, 8, and 9, respectively. The
equation of state defined by eq 5, with the hard-sphere diameter
defined by eqs 6-9, is called EHS.

The effective hard-sphere diameter defined using eq 6 is
plotted in Figure 1 forn ) 12 andn ) 36, using an expansion
in powers of the density up toM ) 2. IncreasingM does not
change the diameter greatly. The effective diameter for harder
potentials, with largern, is almost a constant function of the
density, whereas the effective diameter for softer potentials, such
as then ) 12 potential often associated with intermolecular
repulsion, decreases rapidly as the density increases.

The RF1, RF2, and EHS equations of state can only be
applied to hardnessesn for which virial coefficients have been
calculated. To obtain an equation of state which can be used
for any hardness, it is necessary to fit or interpolate between
the calculatedn values. The effective hard-sphere diameter in
the EHS equation is a smoother function ofn than the virial
coefficients and is consequently easier to fit. Using a least-
squares method, the following are obtained forn g 10:

These equations are an extension of the first-order perturbation

Figure 1. Effective hard sphere diameterd, plotted as a function of
reduced densityFj, for the inverse power potentialsn ) 12 andn ) 36.
The dotted lines are obtained from eqs 6-9, and the solid lines show
the result of a fit tod, given in eqs 6, 10, 11, and 12. Forn ) 36, the
two lines are indistinguishable.

Bh2 ) Bh2,HSd0
3 (7)

Bh3 ) Bh3,HSd0
6 + 3Bh2,HSd0

2d1 (8)

Bh4 ) Bh4,HSd0
9 + 6Bh3,HSd0

5d1 + 3Bh2,HS(d0
2d2 + d0d1

2) (9)

d0 ) 1 + 0.57722/n + 2.6366/n2 + 4.6994/n3 + 20.4838/n4

(10)

d1 ) -3.9096/n2 - 18.0600/n3 - 159.9276/n4 (11)

d2 ) -4.0469/n2 - 39.3296/n3 + 220.9507/n4 (12)

Ph ) ∑
m)1

M

bmFjm(1 + R2)/[(1 - Fj/Fjc)
2 + R2] (4)

Z(Fj) ) Ph/Fj ) ZHS(Fjd3) (5)

d ) ∑
m)0

M

dmFjm (6)
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expressiond0 ) 1 + γ/n, d1 ) d2 ) 0, whereγ ≈ 0.57722 is
Euler’s constant. The effective hard-sphere diameter defined
using these equations is plotted in Figure 1; the fitted diameter
almost coincides with the calculated value. The equation of state
defined by eqs 5, 6, 10, 11, and 12 is called FIT. It can be used
for any inverse power potential and any fluid density, although
it is not expected to extrapolate well belown ) 10.

Table 2 compares “experimental” compressibility factors,
calculated using Molecular Dynamics computer simulations,30

with the predictions of the equations of state RF1, RF2, EHS,
and FIT, as defined above, each using the calculated virial
coefficients up toBh4. This means thatM ) 4 for RF1,M ) 3
for RF2, andM ) 2 for EHS and FIT. A direct sum of the
virial series (eq 2) toM ) 4 is also used, called SUM. Both
EHS and FIT require the hard-sphere compressibility factor
ZHS(x), which is approximated by the Carnahan-Starling
equation29

where the packing fractionη ) Fjπ/6.
For values of the hardness aboven ) 10, the results show

that the EHS equation of state is the closest to the simulation
data, and the FIT equation of state is a good approximation to
it. The FIT equation of state does not require virial coefficients,
so it can be applied to any hardnessn, although it should only
be used in the fitted rangen g 10. For then ) 6 results, the
two rational functions RF1 and RF2 perform better than the
EHS equation. In all cases, truncating the virial series (SUM)
is not the best method for estimating the pressure.

Figures 2 and 3 present data forn ) 12 and n ) 36,
respectively, obtained with the SUM, RF2, and FIT equations
of state, and using calculated virial coefficients up toBh6 for
SUM and Bh5 for RF2. The EHS equation of state using
coefficients up toBh4 is almost identical to the FIT equation of
state, so it is not shown in the figures, and it is also found that
using higher virial coefficients in the EHS equation of state does
not give much improvement. In contrast, the RF2 rational
function improves significantly and gives consistently good
results, when more than four virial coefficients are used. As
expected, truncating the virial series for hardnessn ) 12 at the
sixth virial coefficient gives a good representation of the MD
simulation results, but this does not apply to the other hardnesses
considered.

In conclusion, new calculations of virial coefficients have
been carried out for a range of inverse power potentials. These

calculations show that the virial series oscillates for softer
potentials, which makes a resummation of the virial series
difficult. However, a carefully constructed rational-function
resummation appears to give better results than simply truncating
the virial series. Calculations of higher virial coefficients can
be used to improve the equation of state, but even if only four
virial coefficients are known, these can be used (via an effective
hard-sphere diameter) to give accurate predictions of the pressure
for potentials with hardnessn g 10. On the basis of this
observation, a simple fitted equation of state (FIT) is presented,
which is expected to be reliable over the same range of hardness.

TABLE 2: Compressibility Factors for Inverse Power Fluids
from Computer Simulation (MD) and Theory a

n Fj MD SUM RF1 RF2 EHS FIT

6 0.3984 3.404 3.451 3.445 3.444 3.277 3.067
6 0.5730 5.088 5.211 5.169 5.186 4.472 3.715

12 0.4872 3.696 3.558 3.780 3.773 3.686 3.688
12 0.6685 5.987 5.463 6.412 6.343 5.934 5.940
12 0.7308 7.039 6.277 7.734 7.597 6.947 6.956
12 0.7639 7.666 6.746 8.559 8.364 7.542 7.554
18 0.5164 3.834 3.582 3.862 3.904 3.846 3.846
18 0.6885 6.237 5.320 6.387 6.565 6.323 6.323
18 0.7745 7.988 6.411 8.308 8.639 8.184 8.183
18 0.7818 8.161 6.510 8.497 8.845 8.366 8.365
36 0.5451 3.941 3.594 3.917 3.985 3.944 3.944
36 0.7268 6.724 5.365 6.618 6.938 6.777 6.777
36 0.8176 8.94 6.481 8.733 9.367 9.080 9.079

a The equations of state, which use calculated virial coefficients up
to the fourth, are defined in the text.

Figure 2. Compressibility factorZ, plotted as a function of reduced
densityFj, for the inverse power potentialn ) 12. Filled circles are
results from Molecular Dynamics computer simulation. The solid line
is the FIT equation of state, dashed lines are the RF2 equation of state
using virial coefficients up to the fourth (upper line) and the fifth (lower
line), and dotted lines are obtained by a direct summation of the virial
series to the fourth (lowest line), fifth (middle line), and sixth (upper
line) virial coefficient.

Figure 3. Compressibility factorZ, plotted as a function of reduced
densityFj, for the inverse power potentialn ) 36. Filled circles and
lines have the same meaning as in Figure 2.

ZHS ) 1 + η + η2 - η3

(1 - η)3
(13)
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