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Virial coefficients up to the seventh are calculated for pair potentials depending on inverse powers of separation,
for inverse powers from 5 to 80. Unlike the limiting (infinite inverse power) hard-sphere potential, some
virial coefficients for finite inverse power potentials are found to be negative. This makes resummation of
the virial series for general inverse power potentials more difficult than that for hard spheres, and some
alternative resummation methods are presented and compared. A general equation of state is proposed for
fluids of particles interacting through inverse power pair potentials, for inverse powers greater than about 10.
This includes the “molecular” inverse power of 12, for which the current results support and extend the
results of previous studies.

where the reduced virial coefficienB, = B3 3" depend on
the hardnes#, but not on temperature. The first two virial
coefficients areB; = 1 andB, = (272/3)['(1 — 3/n).

The virial coefficients are calculated from the usual sum of
“diagram integrals™® in which each diagram represents an
integral of a product of Mayer’gfunctions over the coordinates

I. Background
The inverse power potential

E=¢(Ro)™" Q)
with € > 0 ando > 0, describes repulsion between spherical
particles of “hardnessii separated by a distan& Whenn = of all the particles but one. For higher virial coefficients (large
o, the particles are hard spheres of diameteDther values of m), close cancellation occurs between the different diagram
n can be used to describe excluded volume effects in real integrals, and the fractional accuracy in the virial coefficient is
systems such as powders and colloids (lanye molecular therefore much lower than in each of the diagrams separately.

liquids (h ~ 12), and liquid alkali metals (smat).>-2 Theoretical

work on inverse power systems has included investigations of

the phase behavidr, the liquid/solid interfacé, and the
fluid.®~15

Two methods are commonly used to tackle this problem.
Method 1 involves using the geometric properties of the

diagrams to reduce the dimensionality of some of the integtals.

For example, the fifth virial coefficient is a sum of 10 nine-

The aim of this paper is to present some new methods for dimensional integrals, but five of these can be reduced to one-
obtaining the thermodynamic equation of state for general dimensional integrals and two more can be reduced to six-
inverse power fluids. The equation of state is useful in dimensional integrals. The lower-dimensional integrals can be
developing and testing theories of the fluid state and in evaluated more accurately, so the uncertainty in the virial
predicting phase transitions. The approach taken in this papercoefficient depends only on a few high-dimensional integrals.
differs from that of previous work, which is mainly based on Method 2 involves reducing the number of independent
perturbation theory:'¢-2%in that the virial coefficients are used  sources of error by using the same numerical integration scheme,
here to obtain the equation of state. This can be done for anywith the same points and weights, to evaluate all the different
hardness for which the virial coefficients are known. However, integrals. All the separate integrals are therefore combined into
there are few published virial coefficients, except for the limiting an integration of a single functidi. Cancellation between
hard-sphere fluid. Even for the popular= 12 potential, only  diagrams with positive and negative values at the same point
the first five virial coefficients have been calculated explicifly.  in multidimensional space is thereby taken into account ef-
This work therefore consists of two parts. The calculation of ficiently, although cancellation still arises between positive and
virial coefficients for a range of different inverse power negative values in different regions of space.
potentials is described first, followed by initial attempts to  These two methods are mutually exclusive, since all integrals
combine these data into a general equation of state. treated by the second method must have the same dimensional-
ity. In this work, the virial coefficients up to the fifth are
evaluated using method 1, and the sixth and seventh virial
coefficients are evaluated using a combination of method 2 for
most of the integrals and method 1 for the remainder.

Integrals using method 1 are evaluated in several different
ways. First, two sets of geometric variables are trigds, ris,
ros (I, I, I3, j = 4)} and{riy, rs, cosés (rj, cosé;, ¢j, j =
4)}, wherer;j is the distance between the centers of particles
andj, and ¢;, cos 6, ¢;) define the position of particlg in

Il. Virial Coefficients

For the inverse power potential defined in eq 1, if the reduced
pressure is defined @&= PJ3a° and the reduced density js=
pa®, whereP is pressurep is number density = (ksT)™%,
and ¢ = o(Be)™M, then P is a function of g, but not of

temperature, for each hardnesg? The virial series for the
reduced pressure is

P= Z I_3mf>m spherical polar coordinates relative to the center of mass of all
= spheres wherei < j and spheresandj are “connected” by a
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Mayer f-function. For the first set of geometric variables it is TABLE 1: Reduced Virial Coefficients By, for the Inverse
also necessary to consider separately the cases where particlePower Potential with Hardnessn®

(1 > 4) is on the same side as particle 4, or not, of the plane n Bs

B4 Bs

Bs Bs

defined by particles+3. The radial geometric variablegand 5

6.62922 —2.18438

1.4702(1)

0.054(26)-7.1(12)

ri are then transformed to integration variab$gsands. The 5.25 6.28878 —0.84594 —0.5009(3)  2.890(29) —9.2 (11)
geometric variables (ca ¢) are used as integration variables 55 6.00346 0.13898-1.3886(1)  3.171(22)—5.83(87)
without transformation. Two sets of integration varialdese 5.75 5.76085 0.87836—1.6947(1) 2.640(19) —3.34(73)
tried: {s=r%r < 1;s=(n— 2r2"/(n— 2),r > 1} and{s 6  5.55200 1.44261-1.6886(1)  1.907(15)—1.62(49)
— 4+ (112) simY(2r2 — 12, — 12 (P — 120}, Where 6.25 537027 1.87912—-1.5181(1)  1.205(13)—0.71(45)
rmin @Ndrmax are the limits of the radial variables. These limits 255 g'(z)éggg g'igggé:é'ggiggg 8%‘1‘83 8';%383
are 0 toeo for ryj andrj, for ry they are obtained from a triangle 7"~ 4 94306 2_'70474,0:6886(1) 70.689(9) 0.51(25)
condition on (1, Iy, ), and forrg they are obtained from a 7.5 472790 3.01424—0.1332(1) —0.405(8) 0.49(21)
tetrahedron condition o4y, ris, ras, ryj, I, r3). The second 8 455060 3.21509  0.3493(1) —0.439(7)  0.23(19)
set of integration variables is only tried fog§ — sg. Finally, 8.5 4.40202 3.34589  0.7425(1)—0.358(7) —0.01(18)
the multidimensional integral is evaluated using either Monte 9  4.27564  3.43024  1.0833(1) —0.224(6) —0.01(15)
Carlo or Conro points, in the variables; or (s, coséj, ¢). 95 416682 348315  1.3532(1)-0.036(5) —0.08(14)
These methods both enable the standard errors in the integrals}O g'gzgig g'géggg ig;gggg 8'1328&8'2282
to be estimated, and the methods giving the lowest standard, 379107 3.52751 2:1150(1) 0:776(4)—0:03(11)
errors in a certain amount of computer time are then used again;z 369005 3.50371 2.2612(1)  0.995(4)  0.14(10)
with more integration points, if necessary, to reduce the standard14  3.60642 3.47295 2.3602(1)  1.177(4)  0.26(11)
error below some predetermined value. In general it is found 15 3.53609  3.43951  2.4272(1) 1.309(3) 0.59(11)
that Conroy points are superior to Monte Carlo points, typically 16 ~ 3.47615  3.40566  2.4723(1)  1.415(3)  0.62(11)
by a factor of 5-10 in the standard error, and that the choice 18  3.37950  3.34100  2.5215(1) ~ 1.565(3)  0.80(10)
of rj as geometric variables usually works better than spherical gg g'ggggg g'ggggf ggigégg ig?g% 8822;?)
polar coordinates. 24 319804 3.18751 2.5338(1)  1.752(3)  1.01(9)
Integrals using method 2 are evaluated with a linear spanning 28~ 3.12496  3.11449  2.5095(2)  1.779(3)  1.14(9)
tree. The geometric variables arg, r,s, cosés, (rj, cos6;, ¢, 32 3.07195 3.05769  2.4815(1) 1.793(3) 1.18(9)
j = 4) where ¢, cos#);, ¢;) define the position of particlgin 36 3.03176 3.01255 2.4546(2)  1.790(3)  1.18(9)
spherical polar coordinates relative to particte 1, andg, = 40 300026 297593  24301(2)  1.780(3)  1.12(9)
#2= ¢ = 0. All diagrams with a factor o) 1029 frs .. 5 294499 290912 23801(t)  17669) 11409
can be integrated in this way, so the labeling of points in each 286546  2.80739 2:2926(1) 1:709(3) 1:11(8)
diagram is changed to obtain this factor, if possible. The factor o 274156  2.63622 2.12139(2)  1.564(2) 1.103(6)

of Hj[f(rj—l,j)rjz_l’j] in the integrand is then removed by a
change of variables fromto t, where d = f(r)r2 dr andt =0
whenr = 0. The transformation betweerandt is achieved by
table lookup and interpolation. Finally, the integral is evaluated agree with previous resutésand improve on their precision,
using Conroy points in the variabléscos6, and¢. and are also close to the estimatedluesBs = 0.80(2) andB;

The number of diagrams that do not contain a linear spanning ~ 0, based on molecular simulation data. For “hard” potentials
tree, and hence cannot be evaluated using method 2, is 0 of 1Quith largen, the virial coefficients are positive, at least up to
diagrams foiBs, 2 of 56 diagrams foBs, and 8 of 468 diagrams  B;, and the convergence of the virial series can be accelerated;
for By. In previous work, these remaining integrals have been this is investigated further in the next section. For softer
calculated using additional spanning trée$’In fact, all such potentials, in particular whenis between about 8 and 16, the
diagrams can be efficiently treated using method 1, using the higher virial coefficients change in sign but are quite small,
same scheme as described above.Bgpthe two integrals are  and simply truncating the virial series can be better than trying
both one-dimensional. FoBy, six of the integrals are one- to accelerate its convergen®eFor lower n, the virial series
dimensional and two are six-dimensional. These eight integrals oscillates, and higher virial coefficients are relatively large,
are evaluated in about 1 min of computer time with a Compaq especially forn < 6. The use of the virial series is probably
ES40 computer, giving a standard error of about 0.005 in the not the best starting point for such soft potentials.
reduced virial coefficient. This time and error are both negligible
compared to using method 2 for the other 460 integrals.

The calculated virial coefficients are listed in Table 1. Each

value in the table is typically obtained using at least 100 samples expansion of the pressure can be closely approximated by a
of about 165 million points each. Significant cancellation of ' agional function. In considering whether the use of a rational
errors is achieved through using method 2, as expected. Theg,nqtion to sum the virial series might be useful for softer inverse
largest integrals contributing to the seventh virial coefficient o\ ver potentials, it is helpful to consider first a function that is

B are more than 1000 times larger in absolute value 8an 4\ 1o give satisfactory agreement with the equation of state
itself, and the standard error in the calculated seventh virial ¢ 1404 spheres

coefficient is about 10 times smaller than the largest standard
errors in the individual integrals, calculated in the same way.
It can be seen that some of the fourth and higher virial
coefficients are negative, even though the potential energy
function is entirely repulsive; this contradicts a prediction that
the virial coefficients for such systems would all be posifi¥e.
For n = 12, the calculated virial coefficients up to the fifth

2 Numbers in parentheses give the standard error in the final digit(s).
b Reference 26.

[ll. The Equation of State
For hard spheres, the infinite series occurring in the virial

M
P= 3 bup"l(1=plp)” (3)

The coefficientdr, are obtained from the corresponding reduced
virial coefficients. For hard spheres, a reasonable choice of the
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parameterp, is the reduced density of close-packed spheres,
V2, since the pressure must diverge as the reduced density

increases to this limit. More elaborate rational functions which
have been considered for hard sph&adso diverge close to
this density. Howeverp. = 6/x, corresponding to complete
filling of space, is also commonly usé¥This originates from
using the PercusYevick approximation in the pressure equation

for hard spheres. In the remainder of this paper, the equation

of state defined by the rational function in eq 3, with—= 6/7
(which is found to give better results thap= \/5), is called
RF1.

For large values of the hardness parameteaccelerating
the convergence of the virial series is important, but forrthe

= 12 potential, the use of a rational function has been found to

give worse results than simply truncating the virial sefieand
the same is likely to be true for smaller This is investigated

in more detail below. To find an equation of state which works
for both large and smalh, it may be useful to note that the

singularity in the pressure represented by the denominator of

the rational function in eq 3 is only physically reasonable for

hard spheres. For all other inverse power potentials, there is no

J. Phys. Chem. B, Vol. 109, No. 15, 2006465

Effective diameter d

0.5 0.6 0.7 0.8
Reduced density p

Figure 1. Effective hard sphere diametdr plotted as a function of
reduced densitg, for the inverse power potentiats= 12 andn = 36.

upper limit on the reduced density. This justifies using a rational The dotted lines are obtained from eqs% and the solid lines show

function in which the singularities are moved away from
pc into the complex plane as decreases from infinity, that is

M
p= Z b1+ oA(L — plp)* + o (4)

Expanding this equation in powers of the density up'o?,
and comparing it with the virial series, givestla? = (2Bw/pe

— Bu-1/pA/Bw+1. If pe = v/2 andM = 5, thena? = 0.08 for
hard spheres, and it increases to about 3:3dexcreases to 10,
which is approximately the expected behavior. W&, 1
decreasesy. increases, and the effect of eq 4 is to switch from
a rational function resummation of the virial series to a simple
truncation. It is interesting that the seventh virial coefficient
predicted from eq 4 wittM = 5, namely,B; = (2Bs/pc — Bs/
pA)/(1 + a?), is within the error of the calculations for> 10
when . = +/2; even the sign change & nearn = 12 is

predicted correctly. The equation of state defined by the rational

function in eq 4, withp, = V2 (which is found to give better
results here thap; = 6/x), is called RF2.

the result of a fit tad, given in egs 6, 10, 11, and 12. For= 36, the
two lines are indistinguishable.

substituting eq 6 into eq 5 and expanding in powers of the
density up topM*2. This gives

B, = B2,Hsdo3 Q)
B; = By oy’ + 3B,40,7d; 8
B,= B4,Hsdo9 + 6I_33,H:s‘3105d1 + 3|_32,Hs(d02d2 + dodlz) (©)

and similar equations for high&. From the accurately known
hard-sphere virial coefficients, and the calculated virial coef-
ficients for a particular hardness the coefficientsdy, d;, and
d, are then obtained from egs 7, 8, and 9, respectively. The
equation of state defined by eq 5, with the hard-sphere diameter
defined by eqs 69, is called EHS.

The effective hard-sphere diameter defined using eq 6 is
plotted in Figure 1 fon = 12 andn = 36, using an expansion
in powers of the density up tM = 2. IncreasingVl does not

A different equation of state can be obtained using the conceptchange the diameter greatly. The effective diameter for harder

of a density-dependent effective hard sphere dianiétand
relating the compressibility factat of an inverse power fluid
to the compressibility factoZys(x) of a fluid of hard spheres
with reduced density and diametedo, whered is the reduced
hard sphere diameter, ands defined in eq 1. The relationship
used is

Z(p) = Plp = Z,(pd) )

potentials, with largen, is almost a constant function of the
density, whereas the effective diameter for softer potentials, such
as then = 12 potential often associated with intermolecular
repulsion, decreases rapidly as the density increases.

The RF1, RF2, and EHS equations of state can only be
applied to hardnessesfor which virial coefficients have been
calculated. To obtain an equation of state which can be used
for any hardness, it is necessary to fit or interpolate between
the calculatedh values. The effective hard-sphere diameter in

Alternatively, the reduced free energy can be used in eq 5 insteadhe EHS equation is a smoother functionrothan the virial

of the compressibility factor, giving a different effective
diameter, but this makes little difference to the quality of the
results.

coefficients and is consequently easier to fit. Using a least-
squares method, the following are obtainedrice 10:

The effective hard-sphere diameter is then expanded in 0y = 1+ 0.57722h + 2.6366N° + 4.6994n° + 20.48381"

powers of the density

M
d= Zbdmpm
=

and the coefficientd,, are found for each hardness by

(6)

(10)
d, = —3.9096h” — 18.0600A° — 159.9276A* (11)
d, = —4.0469n” — 39.3296A° + 220.95074* (12)

These equations are an extension of the first-order perturbation



7466 J. Phys. Chem. B, Vol. 109, No. 15, 2005 Wheatley

TABLE 2: Compressibility Factors for Inverse Power Fluids
from Computer Simulation (MD) and Theory?

n P MD SUM RF1 RF2 EHS FIT

6 0.3984 3.404 3.451 3.445 3.444 3.277 3.067

6 05730 5.088 5211 5169 5186 4.472 3.715
12 0.4872 3.696 3558 3.780 3.773 3.686 3.688
12 0.6685 5987 5463 6.412 6.343 5934 5940
12 0.7308 7.039 6.277 7.734 7.597 6.947 6.956
12 0.7639 7.666 6.746 8559 8.364 7.542 7.554
18 0.5164 3.834 3.582 3.862 3.904 3.846 3.846
18 0.6885 6.237 5320 6.387 6.565 6.323 6.323
18 0.7745 7988 6411 8308 8.639 8.184 8.183
18 0.7818 8.161 6.510 8.497 8.845 8.366 8.365
36 05451 3.941 3594 3917 3.985 3.944 3.944
36 0.7268 6.724 5.365 6.618 6.938 6.777 6.777
36 0.8176 8.94 6.481 8.733 9.367 9.080 9.079

@ The equations of state, which use calculated virial coefficients up
to the fourth, are defined in the text.

©

T I |

Compressibility factor Z
o ~ clu

'S

(3}
I T T T T O Y

(4]

eXpreSSiord0=1+'}//n,d1=d2=0,Where’y%0.57722iS LI I A
Euler's constant. The effective hard-sphere diameter defined 0.4 045 05 R°'55 06 065 07 075 08

. . . . . ! . educed density p
using these equations is plotted in Figure 1; the fitted diameter
almost coincides with the calculated value. The equation of state = c X S . -
defined by eas 5. 6. 10. 11. and 12 is called EIT. It can be used densityp, for the inverse power potential = 12. Filled circles are

. y €gs 5, 6, 10, 11, " - - results from Molecular Dynamics computer simulation. The solid line

for any inverse power potential and any fluid density, although s the FIT equation of state, dashed lines are the RF2 equation of state
it is not expected to extrapolate well below= 10. using virial coefficients up to the fourth (upper line) and the fifth (lower

Table 2 compares “experimental” compressibility factors, line), and dotted lines are obtained by a direct summation of the virial
calculated using Molecular Dynamics computer simulatidns, Series to the fourth (lowest line), fifth (middle line), and sixth (upper
with the predictions of the equations of state RF1, RF2, EHS, !in€) virial coefficient.
and FIT, as defined above, each using the calculated virial
coefficients up tdBs. This means thavl = 4 for RF1,M = 3
for RF2, andM = 2 for EHS and FIT. A direct sum of the

Figure 2. Compressibility factoZ, plotted as a function of reduced

virial series (eq 2) taMl = 4 is also used, called SUM. Both 10
EHS and FIT require the hard-sphere compressibility factor
Zus(X), which is approximated by the Carnah&btarling 9
equatior®
8
2_ .3
= 1+77+—77377 (13)
(/)]

=]

-2
g b b b b b ber s b g

where the packing fraction = p/6.

For values of the hardness abave= 10, the results show
that the EHS equation of state is the closest to the simulation
data, and the FIT equation of state is a good approximation to
it. The FIT equation of state does not require virial coefficients,
so it can be applied to any hardnesslthough it should only
be used in the fitted range > 10. For then = 6 results, the -
two rational functions RF1 and RF2 perform better than the 0.5 0_1:,5 o!s 0,'65 of-,- 0,'75 0[8 0‘55
EHS equation. In all cases, truncating the virial series (SUM) Reduced density p
is not the best method for estimating the pressure. Figure 3. Compressibility factoi, plotted as a function of reduced

Figures 2 and 3 present data far= 12 andn = 36, densityp, for the inverse power potential = 36. Filled circles and
respectively, obtained with the SUM, RF2, and FIT equations lines have the same meaning as in Figure 2.
of state, and using calculated virial coefficients upBgfor
SUM and Bs for RF2. The EHS equation of state using
coefficients up tdB, is almost identical to the FIT equation of . - . .
state, so it is not shown in the figures, and it is also found that calcula_mons show that the virial Seres oscnlates_f_or sof@er
using higher virial coefficients in the EHS equation of state does p_ot_entlals, which makes a resummation of the virial Series
not give much improvement. In contrast, the RF2 rational difficult. However, a cargfully constructed ratlpnal-functloq
function improves significantly and gives consistently good fésummation appears to give better results than simply truncating
results, when more than four virial coefficients are used. As the virial series. Calculations of higher virial coefficients can
expected, truncating the virial series for hardness12 atthe e used to improve the equation of state, but even if only four
sixth virial coefficient gives a good representation of the MD Virial coefficients are known, these can be used (via an effective
simulation results, but this does not apply to the other hardnessedard-sphere diameter) to give accurate predictions of the pressure
considered. for potentials with hardnesa = 10. On the basis of this

In conclusion, new calculations of virial coefficients have observation, a simple fitted equation of state (FIT) is presented,
been carried out for a range of inverse power potentials. Thesewhich is expected to be reliable over the same range of hardness.

Compressibility factor Z

[3)]
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