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The solvation of sodium ions in water clusters: intermolecular potentials 
for Na+-H20 and H20-H20 

By RICHARD J. W H E A T L E Y t  

Department of Chemistry, University of  Durham, South Road, Durham DH1 3LE, 
U K  

(Received 4 August 1995; accepted 26 October 1995) 

New model potentials are constructed for Na + H~O and H20-H20, using 
quantum mechanical calculations of the monomer wavefunctions. One par- 
ameter in each model potential is fitted to experimental dimer properties. The 
resulting Na+-H20 potential is consistent with published thermodynamic and 
ab initio data, and the H~O-H20 potential reproduces the structure and energy 
of the water dimer at equilibrium, and the second virial coefficient of steam, 
within experimental uncertainties. The donor-acceptor interchange tunnelling 
pathway on the water dimer potential energy surface has a lower energy barrier 
than the acceptor-acceptor interchange, in agreement with recent spectroscopic 
studies. When a simple non-additive induction potential is included, calculated 
thermodynamic properties of solvated sodium ions are in agreement with 
experimental data. For small clusters in the gas phase, the first solvation shell of 
the sodium ion is predicted to contain four water molecules. 

1. Introduction 

The eventual aim of  this work is to describe the properties of  sodium ions in 
aqueous solution, including structure, energetics, dynamics and spectroscopy, at a 
microscopic level. For  a study of this kind to give realistic results, it is essential that the 
intermolecular potentials for the ion-water and water-water interactions are known 
accurately, and this paper is devoted to the development of  new model potentials for 
these two important dimers. 

The properties of  ionic sodium-water clusters, consisting of a few water molecules 
around a single ion, are used to construct and test the model potentials. Small clusters, 
both ionic and neutral, are formed experimentally in molecular beams, as well as 
naturally in the atmosphere, and recent measurements and analyses of their spectra 
have given detailed and valuable information on intermolecular potentials [14].  
Neutral dimers have been studied most, but trimers are also of  great interest, since they 
will help in developing non-additive intermolecular potentials, and larger clusters will 
give a greater understanding of nucleation processes and the transition from gas-phase 
to condensed-phase properties. A practical reason for using the properties of ionic 
clusters in this work, instead of aqueous solutions, is that clusters are easier to model 
in computer simulations than solids or liquids; for example, periodic boundary 
conditions and Ewald summation are not necessary. 

Although ionic clusters are more difficult to form in a molecular beam than neutral 
clusters, some spectroscopy has been possible, including vibrational predissociation 

t Present address: Department of Chemistry, University of Nottingham, University Park, 
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[5], photofragmentation [6-8], photoelectron spectroscopy [9] and infrared absorption 
[10]. The ionic clusters have included alkali metals with ethanol and propanone, 
aromatic molecules with rare gases, negative ions in water, and H30 + in water. 
However, clusters of water molecules around small alkali metal ions have not yet been 
studied. This means that the methods used successfully to obtain potential energy 
surfaces for neutral species, which involve fitting a large number of parameters to high- 
resolution spectroscopic data, are not yet applicable to the Na+-H20 interaction. 
Other experimental data provide less information. The mobilities of sodium ions in 
water vapour would give little more than a spherically averaged picture of the 
interaction, and thermodynamic information for the dimer is sensitive to essentially 
only the well depth at the equilibrium position. The potential energy surfaces in this 
work have therefore been developed in the knowledge that experimental data will 
provide, at most, only one or two parameters. Most of the detail of the model 
potentials is obtained from first principles, using quantum mechanical calculations of 
the properties of the interacting molecules. 

There are two ways in which ab initio quantum mechanical calculations can be used 
to obtain potential energy surfaces. Using the supermolecule method, the energy of the 
A-B dimer is calculated by solving the electronic Schr6dinger equation, and the 
energies of separated A and B molecules are subtracted to give the intermolecular 
potential. Correlated calculations with large basis sets must be used, or the results can 
be in error by orders of magnitude. Even the most accurate calculations disagree 
substantially; an example is given later in this paper for the water dimer, where the 
disagreement is about 20 %. One of the uncertainties is caused by the choice of basis 
set for separated molecules A and B. If the energy of A is calculated using only the 
basis set of A, the resulting intermolecular potential contains basis set superposition 
error, which tends to make the potential well too deep. A counterpoise correction [11] 
is often applied by using the combined basis sets of A and B to calculate the energy of 
the separated molecules. This is believed to remove the basis set superposition error 
[12], but there remains a basis set incompleteness error, which can be of similar size to 
the superposition error, and is likely to make the potential well too shallow. It is almost 
always infeasible to use basis sets large enough to reduce the basis set incompleteness 
error to an acceptable level. 

Since supermolecule calculations appear to be incapable, at present, of giving even 
one reliable potential energy value for the water dimer, they will certainly not be useful 
for exploring its full potential energy surface, which is six-dimensional, or twelve- 
dimensional if the molecules are not constrained to be rigid. Many thousands of 
calculations would be required to cover the surface adequately. When studying ionic 
solvation, in particular, it is important to have a potential energy surface for the water 
dimer which is reliable over a large volume of configuration space. The positions of the 
solvating water molecules tend to be constrained by the ion, which means that nearest- 
neighbour water molecules in the solvation shell generally repel one another, in 
contrast to bulk liquid where they attract by hydrogen bonding. The breakdown of the 
hydrogen-bonded water structure close to an ion will therefore depend on the details 
of the water potential for both attractive and repulsive geometries. 

An alternative way of using ab initio quantum mechanical calculations, called the 
systematic method in the context of this work, is based on an analysis of separate 
physical contributions to the intermolecular potential, with some experimental 
information also incorporated into the final model. (The word 'systematic' refers to 
the fact that the use ofab initio calculations, and, in particular, the synthesis ofab initio 
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and experimental data, is performed in a systematic way, which does not vary in detail 
from one system to another.) Supermolecule calculations can be partitioned into 
components such as electrostatic, repulsion, induction and dispersion using per- 
turbation theory [13-15], and each component can be fitted to a separate functional 
form. Although this straightforward partitioning of the energy is apparently still 
dependent on the supermolecule method, it has been shown that accurate models can 
be obtained for most of the components using quantum mechanical calculations on 
the isolated monomers only, with no dimer calculations. This reduces the com- 
putational burden from many thousands of dimer calculations to a single calculation 
on each monomer,, and therefore enables larger basis sets to be used. Basis set 
superposition error is also eliminated. The accuracy of the systematic method depends 
principally on the accuracy with which each of the components of the energy can be 
modelled, as well as on the amount of high-quality experimental data that can be 
included. The electrostatic energy is simply the classical interaction between ground- 
state charge densities, and can be calculated and modelled with arbitrarily small 
errors. The induction and dispersion energies can both be represented by power series 
in inverse molecular separation, when the separation is large, and the coefficients of the 
power series are related in a simple manner to the molecular polarizabilities, multipoles 
and dispersion energy coefficients, which can be obtained either experimentally or 
quantum mechanically. The main difficulty arises for small separations, when the 
repulsion energy is important and the power series for the induction and dispersion 
energies are no longer valid. Modelling these short-range contributions to the 
intermolecular potential has been the limiting factor in the accuracy of this approach. 

In this work, an overlap model is used for the repulsion component of the potential 
[16]. This model was applied first to neutral diatomic molecules [16, 17], but recently 
has been used successfully for methanol [18], hydrazine [19] and Li+-H20 [20]. It 
requires only the ground-state charge densities of the monomers, so it is fully in 
keeping with an approach based on monomer ab initio calculations. As a result, it is 
more generally applicable than the Hartree-Fock plus damped dispersion (HFD) 
[21-24] and Tang-Toennies [25, 26] models for the repulsion energy, both of which 
rely on supermolecule calculations at the Hartree-Fock level. The exchange-Coulomb 
(XC) model [27-31] is closer in spirit to the overlap model, particularly in using only 
ground-state charge densities to calculate the repulsion energy, and it has proved 
successful in modelling spherical potentials between atoms, but has not yet been used 
widely for polyatomics. 

The new potentials for Na+-H20 and H20-H20,  based on a systematic 
partitioning of the intermolecular potential and on the overlap model for the repulsion 
energy, are described in sections 2 and 3. Larger clusters are considered in sections 4 
and 5. A non-additive potential is required for clusters of two or more molecules 
around an ion, and is given in section 4. In section 5, simulations of  small clusters, with 
up to six water molecules and one ion, are described, and the structural and energetic 
features of the clusters are discussed and compared with experiment and with other 
potentials. 

Atomic units are used in this paper; the atomic unit of length used is the bohr, 
a 0 = 5"29177249 x 10 -11m, and the atomic unit of energy used is the Hartree, 
E h = 4'3597482 x 10 -is J. 
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2. The Na+-H20 potential 

The model potential has the SI (denoting Systematic potential for Ionic clusters) 
functional form described previously [20] for Li+-H20. The water molecule is assumed 
to be rigid, with the oxygen nucleus at the origin, and hydrogen nuclei at (_+ 1.4305, 0, 
- 1.1071) in the molecular coordinate system. Local axes are also introduced at each 
nucleus. They are all parallel to the corresponding molecular axes, except for the H 
nucleus at (1-4305, 0, - 1.1071), where the local x and y axes are reversed in direction 
for symmetry reasons, as shown in figure 1. The SI potential is a function of the lengths 
(Ro, R1, R2) of the vectors from the O and H nuclei to Na, and the orientations (f2o, f21, 
f22) of these vectors in the local coordinate systems of the O and H nuclei. The 
orientation dependence is expressed using real modified spherical harmonic functions 
Cl0 and Ctm c [32]. 

The total potential is a sum of electrostatic, repulsion, induction and dispersion 
contributions, including a damping function that is designed to correct the multipolar 
induction and dispersion energies for the effects of charge density overlap. A scaling 
parameter is included in the repulsion energy, and fitted to experimental data. The 
functional form and parameters for each component of the potential are described 
below; the specific choice of parameters made in this work defines a new Na+-H~O 
model potential which is denoted SI1. 

2.1. Electrostatic energy 

The electrostatic energy is the classical Coulomb interaction between the ground- 
state charge distributions of the ion and the water molecule. The charge distribution 
of water is represented using atomic multipoles, which are derived from a distributed 
multipole analysis [33, 34] of the water monomer wavefunction. Multipoles of higher 
rank than octopole are ignored, and the quadrupoles and octopoles on the hydrogen 
nuclei are moved to the oxygen nucleus, giving a set of atomic multipoles comprising 
point charges and dipoles located at all three nuclei, plus point quadrupoles and 
octopoles on oxygen. The electrostatic interaction of these multipoles with the charge 
of  the ion is given by 

Eelee = Me Z ~ Q~ . . . .  Clmc(~'~a) Ra (l+l), (1) 
a l m  

in which the subscript a denotes the nuclei of the water molecule and Qz . . . .  is a point 
multipole on nucleus a. The multipole moments used in this work are obtained [20] 
from a self-consistent field (SCF) calculation on the water molecule, and are given in 
table 1. The SCF wavefunction gives a dipole moment that is larger than the experi- 
mental gas phase dipole moment of the water molecule [35], so a correcting factor 
M e = 0"933 is included in equation (1). This representation of the electrostatic energy 
is taken directly from the Li+-H20 potential [20]. As for Li+-H20, the non-multipolar 
first-order Coulomb energy is assumed to be negligible. 

2.2. Repulsion energy 

Short range repulsion in the dimer is caused mostly by electron exchange between 
the monomers. It is fundamentally a dimer property, and cannot be computed directly 
from isolated monomer wavefunctions. A 'first-order' contribution to the exchange 
energy can be calculated using Heitler-London perturbation theory, but higher-order 
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Table 1. Parameters for the SI1 Na+-H20  potential. All quantities are in atomic units. 

Multipoles Repulsion Polarizabilities Damping  and scaling 

= o = 48"305 11 = 9"64 Pl = 1'2069 Qoo,o -0 -83552  aoo ~oo 
= 11 = 9"81 P2 = -0 .09559  Qlo,o  = 0"17094 a~o 5-886 ~11 

o = _ 1 . 5 3 9  11 =9"59 P3=0"01017 Q~0, o = - 0.009 44 alo 0c_1_ 1 
Q22, o = 0.432 53 al0 = - 6.481 c~0 ~ = - 5'00 p4 = 0.002 620 5 
Q3o.o = -0 .34420  a~.o = 4"904 ~ = - 2 . 8 5  p5 = 1.12 

0 = 60-873 ~1 = _ 9'93 Zoo = 4"74 Qa~,o = 0.64665 a22 ~xll 
Qoo, H ---- 0-41776 a~2 = -- 19.467 ~x2_~_1 = --4"55 .Zto = --0'30 

= = 2~ = 42"4 Z~2 = -- 0"04 Qlo,• -0 .01266  aao 6'453 %0 
= 22 = 51.4 z3o = 0-11 Qn,H =--0"04443 a3~ --13"739 ~11 

a4 oo = 1'886 ~-1-12~ = 43'4 Z32 = - 0 ' 2 2  
a4o~- = - 1'043 ~2~22 = 45"9 Z4o = - 0 ' 0 3  
a42 = 2-615 ~-2-2~2 = 42"8 Z42 = 0"02 
B o = 2'411 3 
A~ = 2'6921 C 6 = 8'53 
B~ = 2"5 

z x 

Figure 1. Local axis systems for the water molecule. The local y axes are at right angles to the 
plane of  the figure, and their directions are chosen to give a right-handed axis system at 
each nucleus. 

t e rms  c a n n o t  be  neg lec ted ,  espec ia l ly  fo r  s t rong ly  b o u n d  complexes .  D i r e c t  ab initio 
c a l c u l a t i o n  o f  the  e x c h a n g e - r e p u l s i o n  e n e r g y  w o u l d  be  expens ive  a n d  p r o n e  to basis  

set s u p e r p o s i t i o n  e r ro r .  A n  e m p i r i c a l  m o d e l  is t h e r e f o r e  used  [16]. T h e  r e p u l s i o n  

e n e r g y  is a s s u m e d  to  be  p r o p o r t i o n a l  to  the  c h a r g e  dens i ty  o v e r l a p  in t eg ra l  Sp, w h i c h  

is de f ined  by  t" 
Sp = JpA(r )  pB(r) dr ,  (2) 

w h e r e  pA(r) a n d  pB(r) a re  the  e l ec t ron i c  c h a r g e  dens i t ies  o f  t he  u n p e r t u r b e d  m o n o m e r s .  

T h e r e  is one  p r o p o r t i o n a l i t y  p a r a m e t e r  K r in this o v e r l a p  m o d e l  fo r  the  r e p u l s i o n  

energy ,  Er~ p = K~ Sp. (3) 

T h i s  p a r a m e t e r  cou ld ,  in p r inc ip le ,  be  o b t a i n e d  f r o m  s u p e r m o l e c u l e  ca l cu l a t i ons ,  b u t  

this  w o u l d  be  d o n e  on ly  as a last  r e so r t :  i t  seems m u c h  m o r e  r e a s o n a b l e  to  fit it to  

e x p e r i m e n t a l  da ta ,  i f  su i t ab le  d a t a  are  ava i lab le .  F o r  i o n - w a t e r  c lus ters ,  K r can  be  

f i t ted  to  t h e r m o d y n a m i c  da ta ,  as de sc r ibed  in sec t ion  2.4. 
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The charge densities required for the overlap model are calculated from self- 
consistent field (SCF) monomer wavefunctions in the current work. The basis set used 
for water has been described previously [20]. A 24s12p basis set is used for Na +, with 
geometric progressions of Gaussian exponents 

0~ -1 ~, ,~= 1,~fi'~ , n = 1 - 2 4  (4) 
n - 1  O{n, p : O{1,pfl p , n = 1 - 1 2  (5) 

and ~l,. = 0-303 au, 71,~ = 0"24 au, fl, = 2"04, fly = 2"20. The resulting SCF energy is 
- 161"676948 E h. The charge density overlap integral Sp, defined in equation (2), is 
calculated using the G M U L  program [36] at 100 dimer geometries with 3 a o <~ R o <~ 
5 a0, and fitted to an anisotropic a tom-atom function 

SR = ~ A.(R,,, Oa) exp (-- B .R. )  (6) 
a 

in which the ion-oxygen anisotropy A o has the general form 

A o = ~ azm(Ro) C,~(Y2o). (7) 
lra 

Eight aim coefficients are used in the fit, as for Li+-H~O [20], and the coefficients a00, 
a~0, a2, z and a40 are taken to be linear functions of Ro, with azm(Ro ) = at mo -b atmRol ,' the 
other a.,, coefficients are made independent of R o. The ion-hydrogen pre-exponential 
factor A n is assumed to be isotropic and constant. The resulting fitted parameters are 
given in table 1. The rms percentage fitting error is 1.45 %, which is not reduced 
significantly by allowing A n to be anisotropic. 

2.3. Induction and dispersion 

After the electrostatic energy, the induction and dispersion energies are the most 
important contributions to the long range intermolecular potential. They are written 
as the product of a multipole expansion up to inverse sixth power of separation, and 
a corrector damping function G§ 

E~,~ = (E~a + Er + E,6) G+[S((2o) Ro], (8) 

Eo~sv = -- C6Ro6-G+[ S( ~o)  Ro]. (9) 

The multipolar induction energy contributions E,4 , E,~ and E~6 depend only on the 
polarizabilities 0~mm,W of the water molecule, and therefore are the same as for the 
Li+-H~O potential: 

= + or ]/Ro, (10) -~[~00Q0(~2o) + ~11Qlc(~2o) Ei4 1 11 2 11 2 11 2 4 

= - -  [(~ooC2o(~W~o)C10(~r ..{_ 21 E~ 5 21 0~11C2 lc(/ '~0) C l 1 r  
21 21 

4- ~ _ 1 _ 1 C 2 1 s ( O o  ) C 1 1 s ( O o )  -~- ~20C22c(~r ) Clo((2o)]/R5o, (1 l )  

_ y [ ~ 0 0 C 2 0 ( ~ o  ) _~_ 0~11C21c(~'~0 ) _~ (~2~ 1C218(~r Ei6  = 1 22 2 22 2 

2~ ~ 22 2 ~ ( 1 2 )  
+ ~22C22c((2o) + ~ 2_2C22~((2o) ]/Ro. 

The polarizabilities, and the dispersion energy coefficient C 6, are given in table 1. The 
dispersion energy is a relatively small component (3 % or less) of  the total potential, so 
C 6 is simply assumed to be the geometric mean of the spherical dispersion energy 
coefficients for H20-H20,  45.37 au [37], and Na+-Na +, 1.604 au [38]. 

The corrector~lamping function G+ must be 1 at long range, where charge density 



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

11
:2

6 
7 

N
ov

em
be

r 2
00

7 

Solvation of  sodium ions in water clusters 1089 

overlap is negligible and the multipole approximation is essentially exact, but at short 
ranges G + must fall to zero at least as quickly as R e, as Eind and Edj~p must remain finite. 
Both these criteria are satisfied using the function [20, 39] 

G+(x) = [1 - 8"5 exp ( - p l  x - p 2  x 2 -P3  x4) + 7.5 exp ( -P5  x)] 6, (13) 

in which the parameters pa-p~ are assumed to be transferable between similar systems. 
Their values, taken from earlier work [39], are given in table 1. The argument x is 
assumed to vary as the inverse' size' of  the interacting species, since damping functions 
appropriate for larger species generally tend to 1 more slowly than for smaller species 
as the separation is increased. In this work, the ' size' (denoted X) is allowed to vary 
with orientation, because the water molecule will appear larger in some directions than 
in others. Since the damping depends on charge overlap, X is determined, for each 
orientation, by bringing in the ion until the charge density overlap Sp reaches 0.001 au. 
Using the fit to S~ given in section 2.2, Z is calculated for 200 different orientations f2 o 
and fitted to the function 

X(f2o) = ~;(~mC~m(f2o). (14) 

Eight Z~m coefficients are used in the fit, but the fitted value of ;(~0 is negligible; the 
remaining seven are given in table 1. The agreement with the calculated Z(f2o) values 
is closer than 0.02 a0 for all orientations. 

The scaling function S(~2o) in equations (8) and (9) is then defined as 

s(t~o) = So/Z(~o),  (15) 
so it depends inversely on size, as required. The proportionality constant S O is assigned 
a value of 3'0 [20]. If  more experimental data were available for the dimer, S O could be 
treated as an adjustable parameter. 

2.4. The repulsion strength parameter 

The Na + H20 potential contains one adjustable parameter, Kr, which scales the 
repulsion energy. Its value is determined by fitting to the free energy and enthalpy of 
complexation, which have been measured experimentally by D2idi6 and Kebarle [40], 
using mass spectrometry, to be -73"6 kJ mol 1 and - 100.4 kJ mo1-1, respectively. 
Dalleska et al. have estimated the Na ~ H20 bond energy using collision-induced 
dissociation of  the dimer in xenon [41], and their result agrees very closely with D~idi6 
and Kebarle. The uncertainties in the enthalpy and free energy are believed to be 
between 4 kJ tool 1 and 8 kJ mo1-1, based on similar experiments [42-44]. 

From the model potential, AG and AH can be predicted using thermodynamic 
perturbation theory [44, 45], or by direct integration of  the partition function [20]: the 
two methods give results that agree to about 0.1 kJ tool -1. It is found that Kr can be 
adjusted to give very good agreement with both the free energy and enthalpy. The 
value chosen for the SI1 Na+-H20 potential is K r = 3.93 au, which gives AG = 
-73"9 kJ mo1-1 and AH = -99 .9  kJ mol-L The resulting potential has a well depth 
of 38.556 x 10 -3 Eh, with an equilibrium ion-oxygen distance of 4.157 a0, and C2v 
symmetry. When K r is changed by 0" 1 au, the calculated free energy and enthalpy both 
change by about 0.5 kJ tool 1, so the maximum uncertainty in K r is about 0"8 atomic 
units. This corresponds to an uncertainty in well depth of 1.7 x 10 -~ Eh, and an 
uncertainty in the equilibrium separation of 0" 1 a 0. 

The well parameters predicted by the SI 1 potential are in very good agreement with 
a number of other published calculations, including correlated ab initio supermolecule 
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calculations with reasonably large basis sets. At the MP2 level, the well depth has been 
estimated as 39.35 x 10 -a Eh by Magnusson [46], and 39.52 x 10 3 Eh by Bauschlicher 
et al. [47]. Several workers have included correlation beyond MP2: Spirko et al. 
performed MCSCF calculations around the minimum, and fitted them to obtain a well 
depth of  39.2 x 10 3 Eh [48], and Bauschlicher et al. used CCSD(T) calculations [47] to 
give 39.68 x 10 -3 Eh. These last calculations are probably the most accurate to have 
been performed on the dimer, but the monomer basis set was still smaller than the 
basis set used in the present work. Bauschlicher et al. pointed out that the basis set 
superposition error in their results is of  order 1.5 x 10 -3 Eh, and they also found a 
strong dependence of  the calculated well depth on the basis set. The uncertainty in the 
ab initio results is therefore similar to the estimated uncertainty in the SI 1 potential, 
and accounts easily for the discrepancy of  1 x 10 -3 E h or so. 

The equilibrium separations obtained from the ab initio calculations are usually 
about 4-21 ao, and therefore agree with the Sll  potentiaI to within its estimated 
uncertainty. It is possible that the SI1 bondlength is too short, since it is slightly shorter 
than all the ab initio results. Microwave spectroscopy on the dimer would resolve this 
difference, and would also provide much more reliable data for fitting the parameter(s) 
in the SI functional form. 

It is interesting that SCF supermolecule calculations give a well depth of  
38"72 x 10 -a E~ [49], which is in fortuitously good agreement with the correlated 
calculations and the SI1 potential. This arises from a cancellation of  errors. The SCF 
dipole moment of  water is too large, so the electrostatic energy is overestimated, but 
the polarizability of water is too small, and the Na+-H20 dispersion energy coefficient 
is zero in the SCF approximation, which means that the induction and dispersion 
energies are both underestimated. In this particular case, the cancellation is almost 
exact. 

The well depth of  the SI1 potential also agrees with the POLl  potential developed 
by Caldwell et al. [50] to within 0.5 x 10 -3 E h. This is to be expected, since both 
potentials are fitted to the experimental enthalpy of  complexation, although the fit to 
the SI1 potential also includes the free energy. However, for Li + H20 a fit to the free 
energy [20] gave quite different results from other literature potentials, which had been 
fitted to the enthalpy. This difference can be explained by the experimental results. For  
Na+-H20 the enthalpy of  complexation was measured directly by D~idid and Kebarle 
[40], and it is therefore expected to be more reliable than for Li+-H20, where the 
enthalpy and free energy had to be extrapolated from larger clusters. One indication of  
the greater reliability of  the results for Na+-H20 is that the SI1 model potential agrees 
well with both the enthalpy and free energy, which was not the case for Li+-H20. 

Cuts through the three-dimensional SI 1 potential energy surface as shown in figure 
2 for in-plane, 45 ~ and 90 ~ out-of-plane geometries. As the ion is moved away from its 
equilibrium position, while remaining the same distance from the oxygen nucleus, the 
upward curvature of  the potential is much greater when the ion remains in the plane 
of the water molecule than when it moves out of  the plane towards the ' lone pair '  
positions. This difference is due to electrostatic effects, mainly the repulsion of  the ion 
by the positively charged hydrogen nuclei. The effect becomes more pronounced as the 
geometry is distorted further. In out-of-plane geometries the ion can move more than 
90 ~ round the molecule towards the hydrogen nuclei before the potential well 
disappears, but in the molecular plane the repulsion between the ion and the hydrogen 
nuclei has a greater effect. The shape of  the repulsive wall in the plane is a distorted 
triangle, reflecting approximately the shape of  the water molecule. 
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(a) 7.5" 

5.0" 

2.5" 

0.O 

L,q 

-2.5.  

- 5 . 0  

- 7 . 5  

-7 .5  -5.0 -2.5 0.0 
X / Bohr  

2.5 5.0 7,5 

(b) 7.5. 

5.0- 

2.5- 

,~ 0.0" 

N'~--2.5" 

--5.0" 

7.5" 

5.0 -2,5 0.0 2.5 5,0 
(x  = Y) / Bohr 

(c) 7,5 

5.0 

2.5 

0.0 

L,q 

-2 ,5  

-5 .0  

-7 ,5  

-7 .5  -5 .0  -2 .5  0.0 2.5 5.0 7.5 
Y / Bohr 

Figure 2. Contours of  the SI1 N a + - H 2 0  potential energy surface. Contour labels indicate 
potential energies as E/Eh, and are drawn at E = - 0 - 0 3 5  (0'005) 0"0, 10 2 10-1.% 10-t, 
l0  -~ and l0  ~ E h. In (a) the ion is in the plane of  the water molecule; in (b) it is in a plane 
that includes the water C 2 axis and makes an angle of  45 ~ with the molecular plane, and 
in (c) it is in a plane bisecting the H nuclei. The positions o f  the O and H nuclei are 
projected onto the plane of  the figure and shown to scale. 
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3. The HzO-H20 potential 

A new model potential for water has been developed, using the systematic potential 
method. It is designed to be used with the SI1 ion-water potentials, given in section 2 
and in [20], in simulations of ion solvation, although it would probably be reasonably 
reliable as a pure water potential. It can be used to describe systems ranging from 
dimers to bulk liquid, since the pair contributions and many-body contributions are 
considered separately. 

The development of a model potential for water is also an interesting test of the 
systematic potential method. Many more potentials have been published for the water 
dimer than for other interactions described previously using the systematic method, so 
more detailed comparisons can be made. The systematic method is well suited to 
calculating the water dimer potential. Monomer  wavefunctions are an essential 
ingredient of the method, and water molecules are small enough to allow accurate 
wavefunctions to be calculated. In addition, the contributions to the potential that are 
described more accurately using monomer wavefunctions, such as the electrostatic 
energy, are also the most important  in determining the main anisotropic features of the 
water dimer potential. 

The systematic potential for water (denoted SW) is partitioned into electrostatic 
(first-order Coulomb), dispersion, induction and repulsion contributions, 

E = E~ ~ + Ea~p + E~n ~ + Ere p. (16) 

No explicit charge-transfer or hydrogen-bonding contributions are included. There is 
a reasonable amount  of  evidence to suggest that the phenomenon of hydrogen 
bonding is largely electrostatic in origin [51-53], and it is therefore already included in 
the first-order Coulomb energy, with no need to invoke a separate physical effect. 
Charge transfer, on the other hand, can be a significant part of the potential. The four 
components on the RHS of  equation (16) can be considered to arise from the following 
contributions to the dimer wavefunction, respectively: the unperturbed monomer 
wavefunctions (A, B); the use of virtual orbitals of both molecules simultaneously 
(A ~ A*, B -+ B*); the use of virtual orbitals of  each molecule separately (A ~ A* and 
B-+ B*); and exchange of electrons between the occupied orbitals of the molecules 
(A -+ B, B -+ A). The charge-transfer energy would describe the excitation of  electrons 
from occupied orbitals on one molecule to virtual orbitals on the other (A-+ B* and 
B -+ A*), which is apparently a separate effect. However, in the limit of an infinite basis 
set, there is no distinction between the virtual orbitals of  the molecules, and the charge 
transfer simply becomes part of  the induction energy. Any definition of  the charge- 
transfer energy will therefore depend heavily on the basis set. The usual definition of  
Morokuma [13, 14] also includes a significant amount  of basis set superposition error. 
Two other definitions have been proposed, by Glendening and Streitwieser [54] and by 
Stone [55]. These are claimed to be free of  basis set superposition error. Unfortunately, 
for the water dimer, Stone's definition gives a charge transfer energy that is much 
smaller than the Morokuma value, but Glendening and Streitwieser's definition gives 
a much larger result. The disagreement is more than an order of  magnitude. 
Furthermore, to implement either definition requires ab initio calculations that are 
almost as expensive as full supermolecule calculations, and these would have to be 
performed over the entire six-dimensional potential energy surface. A simple way to 
proceed is suggested by Stone's calculations [55], which show that (using his definition) 
the charge-transfer energy is negative, and at low-energy points on the dimer surface 
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it is reasonably proportional to the repulsion energy, which is always positive. The 
charge-transfer energy is therefore included implicitly in the potential energy surface 
developed in the present work, using an empirical parameter to scale the repulsion 
energy, which is in any case an inherent part of the systematic potential method. Using 
large-scale ab initio calculations to improve this representation of the charge-transfer 
energy seems premature at the present time, given the uncertainties in the model for the 
repulsion energy, which is much larger. 

Functional forms for each of the components in equation (16) are described in 
sections 3.1 3.4. They are obtained from analysis of .monomer wavefunctions, 
rather than supermolecule calculations, as discussed in section 1. Only one adjustable 
parameter is included in the potential, and is fitted to experimental second virial 
coefficient data. The form of the final SW potential is described, and compared with 
published potentials, in sections 3.5 and 3.6. 

3.1. Electrostatic energy 

The electrostatic (first-order Coulomb) interaction energy E<c a) is defined by 

E(c1) = f f  pA(ra)pB(r2)rl~dradr2- ~A ~' z ~ f  pB(r2)r~ldr2 (17) 

- -  E Zo ~pa(ra) rib 1 dra + E ~, Za Z0 r~ 1, 
b6B , )  aeA b~B 

where PA and PB are the electron densities of molecules A and B, and Z a is the atomic 
number of nucleus a of molecule A. The first-order Coulomb interaction energy can 
be partitioned into the familiar multipolar contribution E~ 1) and the penetration 
(non-multipolar first-order Coulomb) energy E~ 1). 

The multipolar first-order Coulomb interaction energy between two water 
molecules is represented as a sum of interactions between the atomic multipoles Qzm 
given in table 1. 

E ~ ) = Y  ", Y', Qlm,aQlm,bTlm,l,m,(Rab,~ab), (18) 
ab lm , l 'm '  

where T~m ' ~'m" is a function of the internuclear separation R,~, and of the orientation 
g2ab of the local coordinate systems of the nuclei a and b (defined in figure l) relative 
to the internuclear vector. The T functions have been tabulated for l+  l' ~< 4 [32], and 
they can also be derived for higher multipole rank [56]. In this work, multipolar 
interactions with l+  l' > 4 are ignored. The inclusion of these quadrupole-octopole 
and octopole-octopole terms would add greatly to the complexity of the potential, and 
the accuracy gained would be considerably less than 1% in the region where the 
multipole approximation is reasonable, that is, from the potential well outwards. 

The penetration e n e r g y  E(p a) is defined as the difference E(c 1 ) -  E~ ). To assess the 
importance of penetration for the water dimer in its equilibrium geometry, the first- 
order Coulomb interaction energy is calculated from the SCF monomer wavefunction 
used previously for the water molecule [20], using the G M U L  program [36], and is 
found to be - 15 x 10 -3 E h. The multipolar electrostatic energy is calculated, using the 
same wavefunction, to be E~m ~) = - 12 x 10 3 Eh" The penetration energy is therefore 
E(, a) = --3 x 10 3 Eh ' which is about 40 % of the binding energy. This result is believed 
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to be fairly reliable, and shows that the penetration energy is a major component of the 
potential; for example, it is over twice the size of the charge transfer energy calculated 
by Stone [55]. The large value of the penetration energy for the water dimer is a result 
of the short O-H hydrogen-bonding distance, which allows the proton to 'penetrate'  
inside the charge density of the oxygen atom. An explicit representation of the 
penetration energy is therefore believed to be important in describing this interaction. 

Using the G M U L  program, and the same wavefunction for the water molecule, the 
first-order Coulomb interaction energy E(c 1) is calculated at 100 different dimer 
geometries, with O-O distances between 4 a 0 and 8 a 0. The multipolar electrostatic 
energy is calculated at the same points, using equation (18), and subtracted to give the 
penetration energy E~ 1). This is found to be negative for all the geometries considered, 
whereas both positive and negative values of the multipolar and non-multipolar first- 
order Coulomb interaction energy occur. The penetration energy is generally expected 
to be negative for neutral molecules at physically reasonable geometries, because the 
multipole approximation takes no account of charge density overlap and therefore 
overestimates the positive electron-electron repulsion. However, the penetration 
energy would certainly become positive at small internuclear separations [31]. 

The penetration energy is fitted to an anisotropic atom-atom function: 

E~I)=Zexp(- -~avR.b)  E A~b..,'.,cS~i'~",'+~'(nav), (19) 
ab l m , l ' m "  

where a and b are summed over the nuclei on molecules A and B, and S is a function 
of orientation, defined by [57] 

(~ I' i"1") D~,,,c(c%) D~'~0(o9)*. (20) $I,,,,,,,' = i'-"-z" ~ k' k" D~m(C~ " * 
/c,U,k" 

In this equation, ~%, ~% and ~ are the orientations of the local axes of nuclei a and b, 
and of the vector from a to b, relative to a space-fixed axis system. The D functions 
are Wigner rotation matrices, and the coefficient in large parentheses is a Wigner 
3-j symbol [58]. The S functions are complex, but real components can be defined using 

S~, ;,:~ = 2 1/~ [(_ I)" S;','i,~ + S,,~:~ (21) 

and similarly for v0,,,c~ These real functions are used in the current work for m, m' ~ l ,  l ' ,  l"" 

0, 0, but for m, m' = 0, 0 the definition in equation (20) is used. No S functions are used 
in the current work with both m and m' non-zero. 

The coefficients A~,,,,m, and exponents a,b, obtained from a fractional least-squares 
fit to the penetration energy, are shown in table 2. The fitted exponents are somewhat 
counter-intuitive, since aou is smaller than the other two. This may be related to the 
fact that the penetration energy proved to be difficult to fit. Even with the 17 
parameters shown, the rms percentage fitting error is 8-3 %, which would correspond 
to a 3 % error in the binding energy. The error is not reduced significantly by allowing 
the hydrogen nuclei to be anisotropic. 

The first-order Coulomb interaction energy for the water dimer is given by the sum 
of the multipolar electrostatic energy (equation (18)) and the penetration energy 
(equation (19)), corrected for the SCF dipole moment, as in section 2.1, by multiplying 
by the factor M~: 

E(c 1) (model) = M~ (E{~) + E(1)). (22) 

This expression for E(c 1) (model) is that used in the SW model potential. As before, 



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

11
:2

6 
7 

N
ov

em
be

r 2
00

7 

Solvation o f  sodium ions in water clusters 1095 

Table 2. Parameters of  the SW H 2 0 - H 2 0  potential, in atomic units, as defined in equations 
(19), (25) and (30). Parameters with m 4 = 0 multiply the real S functions defined in 
equation (21), and are given in the table with a factor of  21/2, which cancels the factor 2 1/2 
in equat ion (21). All parameters are unaffected by interchanging (a, l, m) and (b, l', m'). 

Penetrat ion Dispersion Repulsion 

a, b 

Aoo, oo 
Alo, oo 
A2o, oo 
A22, oo 
Alo, lO 
A3o, oo 
Aa2, oo 
A20,10 
A22,10 

a,b 
A oo, oo 
Alo, oo 
A2o, oo 
A22,oo 

a, b 
Aoo, oo 

= O , O  a , b = O , O  a , b = O , O  
= -96 .426  C~~176 = 64"43 Boo, o 0 = 36.439 
= --27.765 C6~176 2 = 3-96 Blo, o 0 = 14'964 
=- -21 .737  C 2~ = 6"981/2 B2o 6o = 4.164 6,202 
= 33.2221/2 C~176 2 = - l'21 B22,0 o = - 10.9411/2 
= 36.890 C ~176 = - 3 . 6 5  Blo 10 = - 0 ' 4 6 0  6,404 
= 12"083 C2~ = 2"061/2 B~o,o o = -3"688 
= --50.0271/2 C7~176 = 274.4 B32,o o = 11.1311/2 
= 14.609 C~ ~ = - 60.6 B2o, lo = - 2.703 
= -26 .6481 /2  C7203o 3 = 77-91/2 B22.10 = 4-2691/2 

20 = - 1 7 . 1 1 / 2  f l =  2-05 = 2"08 C7,211 
C~176 o = 1511 

= O , H  a , b = O , H  a , b = O , H  
= - 1'837 C~oo o = - 5-39 aoo, o o = 1-948 
= - 1'829 C7,1o 1 17"1 Blo, o o = 0-660 

oo = --0'469 Cs,oo o = 134 B2o, o o = 0"397 
= --0 '1411/2 B22,o o = --0"7181/2 
= 1"88 fl = 2"10 

= H , H  a , b = H , H  
= 0"310 Boo, o o = 0"091 
= 2.10 fl = 2.07 

Me  = 0.933. I t  seems r e a s o n a b l e  to  scale the  p e n e t r a t i o n  e n e r g y  as wel l  as  the  

m u l t i p o l a r  C o u l o m b  energy ,  s ince b o t h  ar ise  f r o m  in tegra l s  o v e r  t he  c h a r g e  densi t ies ,  

b u t  f u r t h e r  ab initio c a l c u l a t i o n s  are  r e q u i r e d  to  check  this.  

3.2. Dispersion energy 

T h e  d i spe r s i on  e n e r g y  o f  i n t e r a c t i o n  b e t w e e n  w a t e r  m o l e c u l e s  c a n  be  w r i t t e n  as a 

d a m p e d  m u l t i p o l e  ser ies :  

] Ed~p(R, g2) = C,(g2) R n G(R, g-2), (23) 

w h e r e  R a n d  ~ are  t he  i n t e r m o l e c u l a r  s e p a r a t i o n  a n d  re la t ive  o r i e n t a t i o n ,  a n d  the  C,  

are  d i spe r s i on  ene rgy  coeff icients .  T h e  c o r r e c t o ~ d a m p i n g  f u n c t i o n  G is i n t e n d e d  to 

co r r ec t  fo r  t he  neg lec t  o f  h i g h e r  p o w e r s  o f  R a, a n d  to  r e m o v e  the  s ingu la r i ty  in the  

m u l t i p o l e  series a t  R = 0 by  a c c o u n t i n g  fo r  c h a r g e  o v e r l a p  ( d a m p i n g )  effects. 

T h e  d i spe r s i on  ene rgy  coeff ic ients  c a n  be  o b t a i n e d  f r o m  m o n o m e r  c a l c u l a t i o n s  o f  

the  g r o u n d - s t a t e  w a v e f u n c t i o n s ,  p s e u d o s t a t e s  a n d  p s e u d o - e x c i t a t i o n  energ ies  [59-61]. 

C o r r e l a t e d  ab initio m e t h o d s ,  a n d  la rge  basis  sets, a re  r e q u i r e d  to  give a c c e p t a b l y  

a c c u r a t e  coeff icients ,  so t he  ca l cu l a t i ons  a re  qu i t e  expens ive .  T h e  bes t  va lues  in  the  

l i t e r a tu re  are  t hose  ca l cu l a t ed  by  W o r m e r  a n d  H e t t e m a  [62], w h o  give d i spe r s i on  
m, m' e n e r g y  coeff ic ients  C,;t ,r ,  r, fo r  n ~< 10 in the  e x p a n s i o n  

C,,(~) = Z m, m' m,,,,' C,,;, ,  , ,  ,,, S,,r , , , ,  (,Q). (24) 
1,1',U,m,m' 
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In their results, R and t2 refer to the separation and orientations of the molecular 
centres of  mass, and they use expansion functions that differ slightly from the S 
functions defined in section 3.1. They tabulate 39 anisotropic dispersion energy 
coefficients that are not related by symmetry, and inclusion of  symmetry-related 
coefficients increases this number by a factor of four or more. 

In the current work, the number of  different dispersion energy coefficients is 
reduced by fitting the multipolar dispersion energy calculated by Wormer and 
Hettema to an a tom-a tom function: 

Emult, disp ~--- -- E Z Z Cmab,mil, r, ~" S~IY, I; (f2.b) R;~. (25) 
ab n l , l ' , l " ,m,m" 

The atom atom dispersion energy coefficients ..... " ' " C,b',,;z, r, r' m thxs equation are fitted at 
200 different geometries with O-O separations between 6 a 0 and 12 a 0. An rms 
percentage deviation of  less than 1% is obtained with 14 different coefficients, which 
are shown in table 2. This representation is cheaper to use than equation (24), because 
there are fewer terms in the sum, and because the angular momentum ranks (l, l', F) are 
generally smaller in the current work. The isotropic C 6 dispersion energy coefficient 
from the fit, C 6 = 42.87 au, is 5.5 % smaller than the accurate value given in section 2. 
This difference is surprisingly large, but not particularly serious, since the total 
dispersion energy is less than one quarter of  the total interaction energy at the 
equilibrium geometry. Discrepancies in the fitted C~ must be corrected for partly by 
the higher fitted coefficients, in the range of  separations used for fitting. 

The multipolar dispersion energy is then multiplied by a corrector-damping 
function G. In this work, the simple XC-1 damping function [27] is used, 

G(R,(2) = exp[--O.4(1.28R*/Roo--  1)2], Roo < 1.28R*, 
= 1, Roo > 1.28R*. (26) 

This functional form is not completely suitable for the water dimer: for example, it 
does not depend on the relative orientations of  the water molecules. Although it is 
possible to calculate damping functions using ab initio methods, such calculations are 
currently feasible only for small atoms and linear molecules. 

The parameter R*, which appears in equation (26), is the equilibrium van der 
Waals separation, 7.82 a0, for triplet H - H  [27], and for other van der Waals dimers it 
is reasonable to assume that R* will increase with the size of the molecules forming the 
dimer. For  the water dimer R* is chosen to be 8.86 a0, which is 1.133 times more than 
for H-H ,  because the square root of  the ratio ofisotropic dispersion energy coefficients 
(Cs/CG) 1/2, which also reflects the size of  the molecules, is 1.133 times more for the 
water dimer than for the H dimer. This use of  dispersion energy coefficients to scale the 
length parameter in damping functions is justified by previous work [30, 63, 64]. 

3.3. Induction energy 

The induction energy is also written as a damped multipole series: 

E~nd=--�89 Z _~r ~.A ~A (27) r r i m  r vm" 
A lm, l 'm" 

where F~m is a component of  the electric field at molecule A due to the other molecule 
B, and is calculated using 

F~m = M e ~,, Qr,.~,,,bTzm,r,m,,(RA~,,~Ab) Gind(RAB, f2AB). (28) 
b,U,m" 
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In these equations, e is a multipole polarizability of the water molecule, centred at the 
oxygen nucleus, M e corrects for the SCF dipole moment, Q is a distributed multipole, 
and Tis an interaction tensor. These quantities are defined in sections 2.1, 2.3 and 3.1. 
The maximum value of l+ /"  in equation (28) is restricted to 2, which simplifies the 
model potential by removing a number of small contributions with complicated 
functional forms. 

The function Gina, which is included to account for the effect of charge density 
overlap on the electric field at short range, behaves as the square root of an induction 
energy damping function, since the induction energy calculated from equation (27) 
includes the square of Gin a. Since an appropriate induction energy damping function 
is not known, the function Gin a is replaced by the square root of the dispersion energy 
damping function G, which is defined in equation (26). A related approximation has 
been made by Millot and Stone [65], who also pointed out that the induction energy 
damping function is not a particularly important part of the potential. 

3.4. Repulsion energy 

The repulsion energy is estimated from the charge density overlap integral Sp, using 
a single proportionality parameter Kw, 

Ere p = K w Sp. (29) 

The charge density overlap integral S, is defined by equation (2). It is calculated for 
the water dimer for the same geometries as the penetration energy, and the results are 
fitted to an analogous functional form: 

Sp = Z exp (-f l .b  R.0) Z B~m o, z'm' SI,~i,,3;z , (f2ab)" (30) 
ab lm,l'rn' 

The best-fit parameters are given in table 2. The rms percentage fitting error is 3'9 %, 
which is smaller than the error in the fit to the penetration energy. 

The parameter K w is fitted to experimental second virial coefficient data [66]. The 
second virial coefficient of water can be calculated, neglecting quantum corrections, 
from the integral 

B(T) = NA 4 ~  f ' " f [1 - exp ( -E /kT ) ]dradcosOdOdo~dcos f l dy ,  (31) 

where E is the intermolecular potential energy between one molecule at the origin, and 
a second molecule translated by (r, 0, r in spherical polar coordinates, and rotated by 
the Euler angles (e, t ,  7), relative to the first. Since quantum corrections will be most 
important at low temperatures, the high temperature experimental values are weighted 
most in the fit. 

Two methods are used to evaluate this integral. Both depend on dividing the 
coordinate r into slices, which are chosen to be 0-4, 4-5.5, 5.5-7, 7 10, 10-20, 20-50 
and 50--300 a 0. The integral 0M a o is performed analytically, replacing E by oo. This 
approximation is justified, since changing the limit from 4 a 0 to 3.5 a 0 has no effect on 
the final result. The other coordinates are not subdivided. 

The first method used to evaluate the integral over each slice (except the first) is a 
straightforward Monte Carlo procedure. Random points are selected in the six- 
dimensional space, and the value of the integrand is averaged over all the random 
points chosen. When 40000 points are used in each slice, the uncertainty in the result 
is estimated to be less than 2 %. 
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The second method uses importance sampling and the Metropolis algorithm. For  
each slice, the integral 

NA f f (-E/kT)dr3dcosOdOd~dcosfld~ (32) F ( T ) = ~  --. exp 

is well-defined, even though it would be infinite for an infinite range of  r. Although 
F(T) cannot be evaluated directly using importance sampling, it can be differentiated 
to give 

F_ 1 dF  _ d l n F  _ - f ' " f e x p ( - E / k T ) d r 3 " " d ~  (33) 
d(1/kT) d(1/kT) f '"fexp(-E/kT)dra.. .d7 

This quantity equals - ( E ) ,  i.e. minus the average energy value calculated from a 
Monte Carlo simulation with Metropolis importance sampling. Integrating equation 
(33), it follows that 

F ( T ) =  F(oo)exp[-fl/k~'<E)d(1/kT)] (34) 

and putting 1/kT = 0 in equation (32) gives F(oo) = 2rtNA(r ~ --r~)/3, where r~ and r~ 
are the bounds on the integral over r a. The means that it is possible to calculate the 
contribution to B(T) from each slice, provided that ( E )  is known as a function of T 
from the required temperature up to T = oo. Then F(T) can be calculated from 
equation (34), and the contribution to B(T) is 2~NA(r ~ -- r~)/3 -- F(T) for the slice from 
r0 a to r~. This procedure is based on the thermodynamic perturbation method of  
evaluating free energies [44]. 

In practice ( E )  is calculated by Monte Carlo simulation for 1/kT = 0, 100,200 . . . . .  
900 atomic units, then fitted to a rational function of/? = 1/kT, 

( E ) =  a~ (35) 
1 +blfl+b2/? 2' 

and integrated using Simpson's rule. To obtain an accuracy of 2 %, it is found that up 
to 20 000 evaluations of the potential are required for each value of  1 /kTin  each slice. 
About nine values of  I/kTare required to give second virial coefficients down to T = 
400 K. The agreement with the straightforward Monte Carlo method is then within 
the estimated error of  2 %. 

The first (straightforward) Monte Carlo method is more efficient, since all the 
energy calculations can be reused at different temperatures, whereas in the importance 
sampling procedure a separate simulation is required at each temperature. The first 
Monte Carlo method is therefore used, with 400000 points in each slice. The fitted 
repulsion energy scaling parameter is K w = 6.08 au, giving the calculated second virial 
coefficients shown in table 3. A change in K w of 0.1 au changes B by about 3 cm 3 mol a 
at 673 K, so the value of  K w is determined by the second virial coefficient data to 
within about 0.05. The agreement with experiment at temperatures of 473 K and 
above is excellent, but at 423 K the calculated second virial coefficient is not as 
negative as the experimental value of  Kell et al. [66]. However, after the current work 
was completed, the recent results of  Eubank et al. [67] were discovered. These results 
apparently have been largely overlooked in the literature. Eubank et al. show that 
earlier measurements of  second virial coefficients have been affected seriously by 
adsorption at low temperature, and give corrected second virial coefficients for water, 
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Table 3. Experimental and calculated second viral coefficients for the water dimer. 
Experimental second virial coefficients Bex p are taken from the fitted function of Kell et 
al. [66] between 423 K and 673 K, results in parentheses come from the more recent work 
of Eubank et al. [67], and from 773 K to 1173 K the results quoted by Kozack and Jordan 
[68] are used. 

- B,:~le/ 
T / K  --Bexp/Cm 3 mo1-1 cm a mol 1 

423 338 (288+ 10) 298 
473 213 (203 __+2) 207 
523 153 153 
572 117 117 
623 92 92'5 
673 73"5 74"5 
773 50"4 50"5 
873 35'2 35-3 
973 24'6 25"0 

1073 17"0 17'7 
1173 11"6 12"2 

. . . .  

J 
Figure 3. Structural parameters for the water dimer with C~ symmetry, which includes the 

equilibrium geometry. In the acceptor molecule, the hydrogen nuclei are placed 
symmetrically above and below the plane of the figure. The angle ~ is measured between 
the O-O line (dashes) and the water C 2 axis. 

which are shown in table 3. The new results are in excellent agreement with the results 
obtained from the SW potential. The high temperature results quoted by Kozack and 
Jordan [68] also agree with the predictions of the SW potential, to within experimental 
error. 

The fitted parameter, K w = 6"08 au, can be compared with analogous repulsion 
energy scaling parameters K r = 3.93 for N a + H 2 0 ,  given previously in this paper, and 
10.95 for Li + H20, obtained in earlier work [20]. This parameter clearly is not 
transferable between different systems, but on the other hand it changes by a factor of  
less than three between the three dimers. 

3.5. Equilibrium structure and energy o f  the water dimer 

It is now generally accepted that the lowest-energy structure of the water dimer is 
singly hydrogen bonded, with C s symmetry. The hydrogen donor molecule lies in the 
symmetry plane, while the hydrogen acceptor is at right angles to the plane. If  the 
water molecules are rigid, there are three structural parameters describing the 
equilibrium geometry (see figure 3): the O O distance R, the angle fl, which describes 
the nonlinearity of the hydrogen bond, and the angle ~ between the acceptor C 2 axis 
and the O-O direction. 

Since the potential energy surface is quite flat and anharmonic around the 
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minimum, experiments have not, as yet, provided accurate values for any of  these three 
parameters, or the dissociation energy AE from the bottom of the potential well. The 
values most often quoted [69, 70] have rather large uncertainties: 0~ = 58~ 6 ~ = 
- 1 ~  ~ AE = 22.6-t-2.9 kJ mol 1, and R 0 = 2"98 A. Here R 0 is the average O-O 
distance in the ground vibrational state of the dimer. Its experimental value is reliable, 
but since it includes anharmonic effects it is likely to be larger than R. The SW 
potential developed in this work has the correct symmetry in the equilibrium 
geometry, and structural parameters in agreement with the experimental error 
bounds: 0~ = 61.6 ~ = 5.8 ~ AE = 19.8 kJ mo1-1, and R = 2.924 A. 

The predicted equilibrium geometry can be compared more directly with the 
results of  ab initio calculations on the water dimer. Unfortunately, ab initio studies 
have produced results that differ from each other by at least as much as the 
experimental uncertainties. Smith et al. [71] have optimized the geometry at the MP2 
level, with two fairly small basis sets, obtaining R = 2.908 ,~ in both cases. They 
calculated AE to be 22.7 kJ mol 1 (MP2), 22.0 kJ mol 1 (MP3) and 22.6 kJ mo1-1 
(MP4) for this geometry, but the basis set superposition error (BSSE) was more than 
3.5 kJ mo1-1 in each case. Rybak et al. [72] performed SAPT and MBPT4 calculations 
on the dimer for a few geometries; the MBPT results gave R between 2.95 and 3"00 ,~, 
with AE ~ 18.8 kJ mol -~, but the SAPT calculations gave a considerably shorter and 
stronger bond. More recently, Feller [73] has investigated the effect of a systematic 
series of basis sets on the dimer energy, but using only one geometry with R = 2.911 ,~. 
He estimated the basis set limit of AE to be about 21 kJ tool -a, but even the largest 
basis set gave a BSSE in excess of 2 kJ mo1-1. Van Duijneveldt-Van de Rijdt and Van 
Duijneveldt [74] used the full counterpoise correction, at the MP2 level, in an attempt 
to remove the BSSE, and their largest basis set gave AE = 19"7 kJ mol -~, with R = 
2.949 A. Saebo et al. [75] used a local correlation method to remove BSSE, and their 
most accurate result, at MP4(SDQ) level with a fairly large basis set, was AE = 
19.3 kJ mol 1. Their calculations were performed at a single point with R = 2"97 ,~, 
and they estimate that more accurate calculations could alter the energy by 2 kJ mol -~. 
Chakravorty and Davidson [76] also performed MP4(SDQ) calculations, with a large 
basis set, but with fairly large R values of  2.98-3.00 A. They obtained AE = 18 and 
19 kJ mo1-1, with and without the counterpoise correction, respectively. The only 
definite conclusion to emerge from these studies is that the experimental value of AE 
is unlikely to be too small, and may well be too large by about its quoted uncertainty. 
This is in agreement with the prediction of the SW potential. 

A large number of  model potentials have also been published for water, although 
many of  these have been fitted to the properties of  liquid and /o r  solid water, and do 
not reproduce satisfactorily the structure of the dimer. For  example, the POL 1 model 
of  Dang [77] gives an O-O distance o f R  = 2.82 A, which is too short, and a well depth 
of 23 kJ mol -~, which is (probably) too deep. The effective potential of Wallqvist and 
Berne [78] gives a shallow minimum, AE = 14.7 kJ mo1-1, and a small acceptor angle, 

= 19 ~ 
Recent model potentials which have been designed specifically for the water dimer 

include the ASP potential of Millot and Stone [65], which is constructed in a similar 
manner to the current SW potential as a sum of Coulomb, repulsion, induction and 
dispersion components. One difference is that the ASP potential has no fitted 
parameters; the repulsion energy is calculated from the difference between the 
Hei t ler-London first-order interaction energy and the multipolar electrostatic energy. 
The penetration energy is therefore included in the repulsion energy. The equilibrium 
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geometry of the ASP potential is similar to the SW potential, except that the O-O 
distance is R = 2.98 A for the ASP. This is probably too long, whereas the SW distance 
may be too short. The dissociation energy E = 19.6 kJ mo1-1 for the ASP potential is 
close to the SW value, and the second virial coefficients are predicted almost as well by 
the ASP potential as by the SW potential. 

A simpler model, consisting of four point charges, a Lennard-Jones centre and a 
point polarizability, has been proposed recently by Kozack and Jordan [68]. The 
potential was fitted to second virial coefficient data, and the agreement is very good; 
the dimer structure is also predicted correctly. The dissociation energy is 21.5 kJ mo1-1, 
the donor and acceptor angles are in good agreement with experiment, and the 
equilibrium separation is R = 2.98 A. The Kozack and Jordan model was also used in 
liquid simulations, but the results were not encouraging. 

Another model potential, which is similar to the SW model in several ways, has 
been published by Astrand et al. [79]. The oxygen and hydrogen atoms are assigned 
charges, dipoles and point polarizabilities, and a London dispersion energy is added, 
together with a repulsion energy based on the square of the overlap integral between 
the monomer wavefunctions. The resulting potential has an equilibrium O-O 
separation of 2.90 A, with a dissociation energy of 20.2 kJ mo1-1, and ~ = 65 ~ fl = 
3-4 ~ . It is interesting to note that the electrostatic energy of this model is too large, since 
Hartree-Fock multipole moments are used, and the London C 6 dispersion energy 
coefficient is too small (30.2 au), but these effects almost cancel to give a reasonable 
dimer energy at the minimum. Specifically, the Astrand electrostatic energy, 
-28.6  kJ tool 1, is about 4 kJ mol 1 more negative than the SW multipolar elec- 
trostatic energy, and the Astrand dispersion energy, - 4 . 6 k J m o l  1, is about 
4.5 kJ mol 1 less negative than the SW dispersion energy. 

A somewhat different approach has been adopted by Franken and Dykstra [80], 
who used diffusion quantum Monte Carlo simulations to fit the Lennard-Jones 
parameters in a model potential to experimental rotational constants. Their resulting 
model potential has an equilibrium O-O distance of 2.916 A, in very good agreement 
with the SW potential, but they obtain a dissociation energy of 22.9 kJ mo1-1, and 
estimate that the true value is at least 21 kJ mol 1, which is larger than the SW energy. 

3.6. Transition structures for  the water dimer 

It is desirable to test the reliability of the SW potential by monitoring its 
performance at regions of configuration space away from the minimum. In this respect, 
a comparison can usefully be made with the ab initio results of Smith et al. [71], who 
optimized the structures of ten stationary points on the water dimer surface, at the 
MP2 level, and calculated MP2 and MP4 energies for each point. Millot and Stone 
have also published a comparison of their ASP potential [65] with the results of Smith 
et al., and found a slightly different energy ordering of the ten points. These results will 
also be compared here with the SW potential. 

It should be noted that the results of Smith et al. include intramolecular degrees of 
freedom, whereas the SW potential assumes that the water molecules are rigid. In 
principle, the SW potential can be applied to water monomers in any intramolecular 
geometry, since the positions of the nuclei completely define the potential. In practice, 
it should only be used, in its current form, for rigid water molecules. The water charge 
densities, multipoles, polarizabilities and dispersion energy coefficients will change 
with monomer geometry, and this has not been included in the SW potential; even 
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Table 4. Calculated energies of various stationary points on the potential energy surface of the 
water dimer. The structures and labelling of the stationary points 1-10, and the MP2 and 
MP4 energies, are taken from [71]. MP2 and MP4 energies in parentheses are calculated 
using a larger basis set. Results for the ASP potential are taken from [65]. All energies are 
expressed as - E / k J  mol a. 

Number of SW energy 
Label H bonds MP2 energy MP4 energy (this work) ASP energy 

1 1 27-0 (22.7) 22.4 (22.6) 19.8 18.2 
2 1 24.3 (20.2) 19.6 (20.1) 17-5 14.3 
3 1 24.2 19.3 17.2 14.1 
4 2 21.9 (19.0) 18.2 (19.0) 18.5 16.5 
5 2 20.7 16.9 17.7 13.6 
6 2 20-6 16.7 17-5 13.8 
7 3 17-8 14.7 15-6 15.3 
8 4 8.5 6.7 6.8 7-3 
9 2 19.8 (14.5) 14.9 (14-7) 15.7 14.2 

10 2 14-3 10.6 11.2 10.4 

more importantly,  the change in intramolecular potential with monomer  distortion is 
not  included. This should be borne in mind when comparing the SW and the ab initio 
results. 

In table 4, the MP2 and MP4 energies of  Smith et al. are reproduced, together with 
the SW and ASP [65] energies at the same geometries. Several of  the energies have been 
recalculated by Smith et al. using a larger basis set, and these results are also given. The 
basis set superposition errors have been estimated by Smith et al. to be between about  
15 % and 20 % of  the intermolecular potential, at the MP4 level, and the use of  a 
counterpoise correction would make all the results of  Smith et al. correspondingly less 
negative. 

Considering the uncertainty in the ab initio results, the agreement with the SW 
potential is very good. In all cases, the difference between the ab initio MP4 and SW 
energies is less than 12 %, and changing the basis set does not substantially change the 
agreement. In contrast, the less accurate MP2 energies are all much more negative than 
the MP4 and SW results, up to 40 % in some cases, but improving the basis set brings 
the MP2 energies closer to the others. The ASP potential is shallower than the SW 
potential, and differs from the ab initio results by 20-30 % for structures 1, 2 and 3. 
These are the singly hydrogen-bonded stationary points, and are also the ones for 
which the SW potential differs most  f rom the ab initio energies. I t  is perhaps significant 
that the difference between the SW and ab initio results always lies between 11% and 
12 % for structures 1-3, but for the multiply hydrogen-bonded structures the difference 
is 6 % or less. The SW potential energy is also more negative than the ab initio energy 
for structures 4--10, whereas for structures 1-3 the reverse is the case. This means that 
the energy of  multiply hydrogen-bonded dimers 4-10 is more favourable, relative to 
dimers 1 3, for the SW potential than for the ab initio calculations, but the energy 
ordering within each of  the two groups is largely unchanged. The relative stabilization 
of structures 4-10 is about  3 kJ tool 1 for the SW potential compared with the ab initio 
calculations, and is sufficient to make structures 4-6 lower in energy than structures 2 
and 3 for the SW potential. A similar trend is observed for the ASP potential. There 
is evidently some systematic error, either in the SW and ASP potentials, or in the ab 
initio calculations (or both) that  affects the singly and multiply hydrogen-bonded 
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structures differently. This is unlikely to be the neglect of charge transfer in the SW and 
ASP potentials, since Millot and Stone found that including charge transfer would 
stabilize the multiply hydrogen-bonded structures even more [65]. It also seems 
unlikely that the overlap model for the repulsion energy, used in the SW potential, is 
responsible for the errors, since the ASP potential used ab initio calculations of the 
repulsion energy. One possible source of  error in the calculations of  Smith et al. is the 
BSSE, which they estimate [71] to be about 1 kJ mol 1 more for structures 1 and 2 than 
for structures 4 and 9. Removal of the BSSE would therefore improve the agreement 
with the model potentials, but a substantial discrepancy would still remain. 

The prediction that transition structure 4 has the lowest energy is in agreement 
with the most recent experimental results of  Karyakin et al. [81]. They predicted a 
barrier of 405 cm -1 for the donor-acceptor  interchange in the D20 dimer, and 
592 cm ~ for the acceptor-acceptor interchange, and gave similar predictions for the 
H~O dimer. This contrasts with earlier work and also with the results of  Smith et al. 
[71], who predicted that the acceptor-acceptor interchange would have the lowest 
barrier. Although the barrier heights for the SW potential are much lower (about 
100 cm -a for the donor-acceptor  interchange) this agreement is quite pleasing, and 
suggests that the SW potential could serve as a starting point for fitting to spectroscopic 
data. 

4. The non-additive potential 

In the presence of  an ion, the charge densities of water molecules are distorted, and 
the water-water interaction is modified, so the total potential in ion-water clusters is 
non-additive. This also occurs to a lesser extent in pure water. Many physical effects 
contribute to non-additive potentials. Even for the simplest case, three spherical 
atoms, a number of these contributions are significant, as has been discussed by Meath 
and Aziz [82]. For  three non-spherical molecules, the situation is even more 
complicated. It is useful to distinguish between Coulomb, exchange and mixed 
contributions, and the relative importance of each of  these types of  contribution is 
considered here for small ion-water clusters. 

Non-additive Coulomb contributions include the non-additive dispersion energy 
(including the Axilrod-Teller triple-dipole energy) and the induction energy. For  

-3  3 R-a Na +(H20)2, the non-additive dispersion energy falls off asymptotically as RA~ RAc Be, 
with a small coefficient, and can be neglected. On the other hand, the component of the 
non-additive induction energy that describes the interaction of the dipole on one water 
molecule (B), induced by the ion (A), with the permanent dipole on another water 
molecule (C), is proportional to R~  R~, and makes a significant contribution to the 
potential. The work of Cha|asifiski et al. on H20, HCI and HF trimers [83, 84] also has 
shown that the non-additive dispersion energy is negligible, and that the: deformation' 
energy (which includes the induction energy) dominates the non-additive energy; these 
differences will be even greater when one of the molecules is replaced by an ion. 

The model potential developed in this work therefore includes a non-additive 
induction energy. The field at each oxygen nucleus, due to the atom-centred charges 
and dipoles (from table I) on the other water molecules and the ion, is calculated, and 
the field gradient at each oxygen nucleus is calculated from the permanent charges 
only, to be consistent with the water dimer potential of section 3. Each contribution to 
the field (or field gradient) is also damped by the square root of the appropriate energy 
damping function given in section 2.3 (ion-water) or 3.2 (water water), as described 
in section 3.3. This is also consistent with the pair potentials, and is a reasonable 
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attempt to incorporate non-additivity into damping functions. The second-order 
induction energy is then given by 

F ~  F~, m, o%~,. (36) 
A lm,Ym" 

This includes both additive and non-additive terms, so it incorporates equations (8) 
and (27), which therefore are not used explicitly in the final model potential. A third- 
order contribution is also included, to describe the interaction of  induced multipole 
moments due to the field of  the ion. 

E}~ = s s Y'. F{m (ion) o~llm' m, F~M (ion) Ct~LM, T{~, c, M, (Rxs, I2Au), (37) 
A < B  lm,l'm" LM,L'~I '  

where F~,, (ion) are the field and field gradient components at oxygen nucleus A 
produced by the charge of  the ion. Contributions to the electric field due to other water 
molecules are neglected in the third-order energy. There are three reasons for this: 
first, it makes simulations of  ion-water  clusters easier to perform, as they require no 
iteration of the induction energy, and moving one water molecule requires only of 
order N operations to recalculate the energy (N is the number of  water molecules); 
Second, in relatively small clusters the contribution from the ion dominates the electric 
field, since at a given water molecule the field of the ion is about ten times stronger than 
the field of  other water molecules; third, the absence of a specific third-order energy for 
pure water is most consistent with the water pair potential used. 

Other contributions to the non-additive potential include the effects of electron 
exchange. For  example, the Hei t ler-London energy for the cluster, which is the 
expectation energy calculated using the ground-state monomer wavefunctions 
antisymmetrized over all electron coordinates, contains some non-additive terms. 
These include a first-order three-body exchange energy, which occurs even for three 
spherical atoms, and the interaction of  exchange-induced multipoles on two molecules 
with the permanent multipoles of  a third, which can be classified as a mixed 
Coulomb-exchange term. The three-body exchange behaves asymptotically approxi- 
mately as exp(--o~RaB--flRAc--yRBc), and the mixed term as exp(--aRaB)R~c, 
where the smallest value ofn  is 2 for the ion-water-water  trimer. For  large separations, 
these exchange and mixed contributions are insignificant, but for nearest neighbours 
they may be important. The development of models to describe these effects is still at 
a very early stage [85, 86], and they are likely to be less important than the non-additive 
induction energy. In particular, the non-additive Hei t ler-London energy is found to 
be less important than the induction energy for the trimers considered by Chatasifiski 
et al. [83, 84], and this will also be true for trimers including an ion. Non-additive 
exchange effects are neglected in the current work. 

5. Simulations of Na+(H20)N, N = 1-6 

Solvation of  a sodium ion by a small number of  water molecules is simulated using 
a classical Monte Carlo algorithm, with importance sampling, at a constant 
temperature T = 298 K. The ion is fixed at the origin of  coordinates, and initially N 
water molecules are placed randomly around it. The cluster is equilibrated by making 
10000N attempted molecular moves, then 30000N further moves are attempted, 
during which statistical information is collected. For  N = 1, it is estimated visually 
that about 400 attempted moves are required to remove correlations in the cluster 
energy, and this increases to about 1600 attempted moves for N = 6. Standard errors 
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in the average quantities are therefore multiplied by between 20 (for N = 1) and 40 (for 
N = 6). To avoid the unphysical short range maxima in the potentials, hard spheres 
with diameter 2.5 a 0 are placed on the nuclei. In practice, this short internuclear 
separation is never approached in the simulations. 

Attempted molecular moves are performed by randomly selecting a molecule, 
translating it by up to 0-5 a 0 in a random direction, then rotating it by up to 0" 15 rad 
about a random axis passing through the oxygen nucleus. The attempted move is 
accepted ifexp ( -  A E / k T )  > R, where R is a uniformly distributed random number in 
the range 0-1, and AE is the change in potential energy of the cluster caused by the 
attempted move. Each attempted move is an order N process, requiring recalculation 
of  N -  1 water-water pair potentials, one water-ion potential, 2 N -  1 field and field 
gradient contributions, N contributions to the second-order induction energy and 
N -  1 contributions to the third-order induction energy. 

To calculate the free energy change for the complexation reaction 

Na+(H~O)N_I + H20 -+ Na+(H20)N (38) 

a thermodynamic perturbation method is used [44, 45]. One of the water molecules is 
' labelled', and the potential energy E N -  EH~o of the Na+(H20)N_l cluster without the 
labelled molecule is calculated, as well as EN, the potential energy of  the Na+(H20)N 
cluster. For  100 values of  a parameter 2, given by 2~ = [(k-0"5)/100] 2, k = 1 100, an 
attempted move is accepted if exp ( - A W / k T )  > R, where W is defined by 

W = E N --EH~o + 2(E~o). (39) 

When 2 ~ 0, the position of  the labelled molecule has almost no effect on the sampling, 
and it behaves as an ideal gas molecule. It is confined, in the simulation, by a box of 
volume V~ = 33510 a~ centred on the ion. When 2 ~ 1, the labelled molecule is 
essentially fully bound to the cluster. Two simulations are performed for each N, one 
with 2 increasing from 0 to 1 and one with 2 decreasing from 1 to 0; no systematic 
difference is found. The complexes are equilibrated for 50000 attempted moves at the 
starting value of  2, and for 1000 attempted moves for each subsequent value. 
Statistical averages are calculated over a further 1000 attempted moves for each 2. 
Each attempted move is again an order N process. To improve the sampling, 
attempted translations and rotations of  the labelled molecule are a factor of  2 1/2 larger 
than for the unlabelled molecules, but not larger than 10 a 0 and 3 rad, respectively. 
Every 100 attempted moves, an attempt is made to exchange the position of the 
labelled molecule with a randomly chosen unlabelled molecule. This attempt is 
successful if exp ( -  A W / k T )  > R, where A Wis the change in W caused by exchanging 
the molecules. 

5.1. Complexation enthalpies and free energies 

The enthalpy of  complexation for reaction (38) is obtained from the Monte Carlo 
simulations of Na+(H20)~v and Na+(H20)N 1, using [44] 

A H  = (EN} -- (E~v_a} --kT,  (40) 

where (EN} is the average potential energy of Na+(H20)N, and (E0} = 0. The free 
energy of complexation is obtained from the thermodynamic perturbation results, 

f l  ( En2~ + k T  In N + k T  in (Vm/Ve) - -  kT, (41) AG 

where V~ = 277655 a~ is the volume of  a free gas molecule at T = 298 K. The integral 
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is transformed to an integral over 21/2, and evaluated using the trapezium rule. The 
results are compared with information from mass spectrometry [40, 87] and collision- 
induced dissociation experiments [41] in table 5. 

The free energy changes are in good agreement with experiment, especially for 
larger clusters, but they are more negative than the free energies obtained by D~idi6 
and Kebarle [40] from mass spectrometry for N = 1 ~ 2 and N = 2-~ 3. This is also the 
case for the enthalpy change in these processes, and suggests a possible deficiency in 
the non-additive potential. However, the bond energies obtained more recently by 
Dalleska et al. [41], using collision induced dissociation of the clusters with xenon 
atoms, are more negative than comparable energies obtained from mass spectrometry. 
If  these differences were retained in the free energies and enthalpies, there would be no 
disagreement with this experiment, within the quoted uncertainties. For the larger 
clusters, the enthalpy changes are calculated to be less negative than the results 
obtained from mass spectrometry, but only for N = 5 -+ 6 is the enthalpy outside the 
error bounds. The free energy change differs from the experimental result in the 
opposite direction, and is within the experimental bounds. 

Results are also shown in the table for the modified RWK2 potential of Lybrand 
and Kollman [88], which consists of the water potential of Reimers et al. [89] plus 
polarizability, and ion-water potential and non-additivity fitted to the N = 0 -+ 1 and 
N = 1 -+ 2 enthalpies; the POLl potential of Caldwell et al. [50]; the TIP4P potential 
of Jorgensen et al. [90] with the ion-water potential of Chandrasekhar et al. [9 I]; and 
the ab initio potentials (denoted KPC here) of Kistenmacher et al. [43] for Na+-H20 
and Lie and Clementi [92] for H~O-H20. The results are taken from simulations 
performed by Cieplak et al. [93] (RWK2), Dang et al. [94] (POLl), Perera and 
Berkowitz [95] (TIP4P, POLl),  Jorgensen and Severance [96] (TIP4P), and Mruzik et 
al. [44] (KPC). 

The RWK2 and POLl models, which were fitted to data for both N = 0-~ 1 and 
N = 1 + 2, show discrepancies from experiment in the same direction as the current 
SI1/SW potential for N =  2-~3. For larger N, the POLl  potential seems to give 
enthalpies that are closest to the SI1/SW potential, but all the simulation results 
become less precise for N > 4. The KPC ab initio potential produces energies that are 
much too negative, as a result of  the low level of  ab initio theory and the neglect of the 
non-additive potential, and the TIP4P results are also too negative for clusters up to 
Na+(H20)~. For larger clusters, the TIP4P results are surprisingly in much better 
agreement with experiment. There is a possibility that the experimental enthalpies are 
themselves too negative for N = 4-+ 5 and N = 5 ~ 6: it seems unlikely that the TIP4P 
potential would abruptly start to give better results for larger clusters than the RWK2 
potential and the current potential. Furthermore, the close agreement of the current 
potential with the experimental free energy suggests a discrepancy between the 
experimental free energy and enthalpy values. More accurate experimental meas- 
urements of these thermodynamic quantities are required to differentiate better 
between the various potentials, but the current potential seems to be at least as 
accurate as any of other potentials considered. 

5.2. Structure and energetics o f  the solvation shell 

When N ~< 4 water molecules are added to a gas-phase sodium ion, they arrange 
themselves around the ion at approximately the optimum N a + H 2 0  geometry, with 
Na-O distances of around 4.2 a0, and hydrogen atoms pointing outwards, while the 
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Table 5. Comparison of calculated and experimental enthalpies and free energies for the 
complexation reaction Na+(H20)z~ 1 + H~O + Na+(H20)N at 298 K. Experimental data 
(Exp) are taken from [40] and [87], SW refers to the current work, and other results are 
taken from the references in the text. Figures in parentheses are uncertainties in the final 
digit; the uncertainties in the experimental data are estimated to be between 4 and 
8 kJ mol-L 

N Exp SW RWK2 POLl  TIP4P KPC 

Enthalpies, - A H / k J  mol 1 
1 100" 100(0) 101 (0) 101 (2) 
2 83 a 88 (1) 89 (0) 84 (3) 
3 66" 72 (1) 77 (1) 72 (3) 
4 58" 56 (1) 65 (1) 54 (4) 
5 51 45 (2) 43 (2) 44 (4), 50 (9) 
6 45 35 (2) 41 (3) 53 (5), 43 (9) 

Free energies, - A G / k J  mo1-1 
1 74" 74(1) 
2 55" 61 (1) 
3 39" 44 (1) 
4 26" 30 (1) 
5 16 19 (1) 
6 12 15(1) 

100 (0) 104(0) 
93 (0) 97 (0) 
83(0) 85(i) 
72 (0) 74 (1) 
50 (0) 62 (2) 
45 (1) 53 (4) 

78 (0) 
67 (1) 
55 (1) 
42(1) 
31 (2) 
24 (1) 

a Collision-induced dissociation experiments [41] have been inter- 
preted to give energies that differ from the tabulated results as follows: 
N =  1, no difference; N =  2, 2 kJmol  -a deeper; N =  3, 7 kJmo1-1 
deeper; N = 4, 1 kJ mo1-1 shallower. 

Figure 4. 

0.03- 

?o 0.02" 

- 

~0.01- 

O.C 
4.0 4 .5  5 .0  5 .5  6 .0  

R/a0 
Ion-oxygen radial distribution functions g(R) for Na+(H~O)N, N = 1 4 ,  normalized 

so that J'~ 4rtR ~ o(R) dR = N. 
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Figure 5. Ion-oxygen (solid line) and ion-hydrogen (dashes) radial distribution functions I~(R) 
for Na+(H20)6. The integrated radial distribution functions n(R) are defined by n(R) = 
Ig 4~R~g(R) dR. 

water molecules keep as far away from each other as possible. The cluster is therefore 
approximately linear for N = 2, equilateral for N = 3 and tetrahedral for N = 4. The 
N a - O  radial distribution functions, obtained from the Monte Carlo cluster simu- 
lations, are shown in figure 4 for N = 1 4 .  As N increases, the most  common N a - O  
distance increases by about  0.1-0-2 a0, mostly from N -= 3 to N = 4, and the maximum 
distance from the ion at which water  molecuIes can be found increases more steadily 
and substantially, by about  0.2 a 0 per water molecule added. This shows that the water 
molecules in the solvation shell repel each other, as expected. 

The fifth and sixth water molecules start a new solvation shell, because it is 
energetically unfavourable to pack any more water molecules closely around the ion. 
The N a - O  and N a - H  radial distribution functions are shown in figure 5 for N = 6, 
with the integrated distribution function n(R) giving the number  of  O (and H) nuclei 
on average within a distance R of  the ion. Although the scale is different, the N a - O  
distribution function is closely similar to the distribution function for N = 4, for R up 
to about  6 a 0. The remaining two water molecules are seen to remain outside this 
solvation shell. The N ~ H  radial distribution function has a similar shape to the N a - O  
distribution, but shifted further f rom the ion, showing that the hydrogen atoms tend 
to point away from the ion in the second as well as the first solvation shell. It  should 
be noted that neither distribution function actually drops to zero between the first and 
second solvation shells, suggesting that molecules are exchanged freely between the 
solvation shells. This phenomenon was, in fact, observed in the simulations for both 
N =  5 and N =  6. 

In figure 6, the distribution of Na+-H20  pair energies is shown for N = 1-6. These 
exclude the induction energy, which is fundamentally a non-pairwise-additive 
quantity, and are therefore always less negative than the minimum of  the SI1 
Na+-H20  potential. The first maximum occurs at similar energies for all six clusters, 
although it is interesting that the height of  the first peak does not increase from N = 
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0.0 

? 
2 
~ 0 . 5  

- 3 0  

1.0 

r , i 

- 2 0  - 1 0  0 
E / 1 0  - 3  Eh  

Figure 6. Distribution of Na+H~O pair energies for Na+(HzO)N, N = 1-6, normalized so that 
f ~g (E)dE= N. The peak around E = - 2 9 x  10 3E h increases in height along the 
sequence N = 1, 2, 6, 5, 4, 3; the peak around E = - 9  x 10-aEl~ is not observed for N = 
1-3, and increases in height from N = 4 to N = 6. 

-15  

.10 

0.01 5 

] '  i i ' ' , i , , , , I ' , , , I , , , 0 

0.005 

0.0 , , , , , ,  
5.0 7.5 10.0 12.5 15.0 

R / a o  
Figure 7. Oxygen-oxygen radial distribution functions g(R), and integrated radial distribution 

functions n(R), for Na+(H20)4 (lower solid lines) and Na+(H~O)6 (upper solid lines). The 
difference between N = 4 and N = 6 is shown as dashes. 

3 to N = 4, and  decreases from N = 4 to N = 5 and  6. This shows that  water water 
repuls ion wi thin  the first solvat ion shell is sufficiently large for N = 4 that  it can  be 
favourable  for the molecules to move out  to slightly greater distances f rom the ion, 
where the i on -wa te r  potent ia l  is smaller;  this effect was seen also in the shifting of the 
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~ 

~0.01. 

0 . 0  . . . . . . . . . . . . . . . .  , . . . .  
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Figure 8. Oxygen-hydrogen radial distribution functions g(R), and integrated radial dis- 
tribution functions n(R), for intermolecular contacts in Na+(H20)N, N = 4-6. The 
normalization is f~ 4~zR2g(R) dR --= 2N(N- l). 

peak in figure 4. For  N = 5 and N = 6, it is possible that the water molecules in the first 
solvation shell have to move away from the most favourable ion-water geometry in 
order to optimize their interaction with molecules in the second solvation shell. 
Molecules in the second solvation shell are still relatively tightly bound to the ion, as 
shown in figure 6. Although the binding energy in the second shell is only about one- 
third of  the energy in the first shell, it is about 1.5 times larger than the depth of the 
water-water potential well. 

The interaction between molecules in the first and second solvation shells is 
investigated in more detail in figures 7-9. Figure 7 shows the O-O radial distribution 
function for N = 4 and N = 6. For  N = 4 a single, broad peak is observed, consistent 
with the proposed structure of the solvation shell as a floppy tetrahedron. The radial 
distribution function for N = 6 shows a similar feature, but there is an additional peak 
around R = 5"5 a 0, as well as some less interesting features at long range. A difference 
plot of  the two functions shows the structure of the additional peak more clearly, and 
the integrated number of  O-O contacts, n(R), indicates that there are between two and 
three more of these short O-O distances in Na+(H~O)6 than in Na+(H20)4. These 
observations are explained by hydrogen bonding between water molecules in the first 
and second solvation shells. The minimum O-O distance in the SW potential is 5.5 a,, 
which agrees with the position of  the peak. A molecule in the second solvation shell 
might bond to only one molecule in the first shell, or it might bridge two first-shell 
molecules, making two hydrogen bonds which would presumably be distorted and 
have a smaller energy. Apparently both possibilities occur in the simulations, since 
there are more than two, but less than four, short O-O distances. 

Figure 8 show the O - H  radial distribution functions for N = 4, 5 and 6, at small 
interatomic separations. For  N - -  5 and N = 6 there is a prominent peak at about 
3"7-3.8 a0, which agrees with the minimum O - H  hydrogen bond distance of  3"7 a 0 for 
the SW potential. Integrating up to the first minimum, at 4.7 a0, gives a total of  0.2 
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E / i0 -~ E~ 
Figure 9. Distribution of H~O-H20 pair energies for Na+(H20)N, N = 4-6, with the 

normalization fy~ g(E) dE = N ( N -  1)/2. For E < 10 -3 E h, the bottom curve corresponds 
to N = 4 and the top curve corresponds to N = 6. 

hydrogen bonds for N = 4, 1.4 for N = 5 and 2-4 for N = 6. This supports the 
conclusion that neither the single nor the bridged hydrogen bonds are found 
exclusively. Figure 9 shows the distribution of  H 2 0 - H 2 0  pair energies, excluding the 
induction energy. There is a maximum around - 5 x 10 -3, but the energy profile is 
relatively flat, showing that the hydrogen bonds are not rigid. This is to be expected at 
the temperature of  the simulations, T = 298 K. The area under the first peak, up to a 
fairly arbitrary energy cutoff - 1.5 x 10 3 Eh ' gives 0.1 hydrogen bonds for N = 4, 1"3 
for N = 5 and 2-4 for N = 6, in good agreement with the previous estimate. It  can also 
been seen f rom figure 9 that the water molecules predominantly repel one another 
when N = 4, and the high-energy part  of  the figure is very similar for N = 4, 5 and 6. 
This is further evidence for the relatively small effect of  the fifth and sixth water 
molecules on the structure of  the first solvation shell. 

There has been some disagreement in the literature over the minimum-energy 
structure of  Na+(H20)6. The structure predicted by the current SI1 /SW potential, with 
four molecules in the first solvation shell and two in the second shell, is supported by 
recent Har t r ee -Fock  and MP2 ab initio calculations performed by Kim et al. [97], 
using the large Na  + basis set of  Bauschlicher et al. [47] plu s a TZ2P water basis, and 
also by the MP2 calculations of  Glendening and Feller [98], which were carried out 
with a smaller basis set. A density functional calculation previously had given an 
octahedral structure [99] for the cluster, and the simple model potential of  Perez et al. 
[100] also suggested that a single solvation shell would be formed. It  is noteworthy that 
even such ' coarse '  details of  ionic solvation are sensitive to the accuracy of  the model 
potential (and the level of  ab initio theory), and this shows the considerable importance 
of obtaining, and using, reliable intermolecular potentials when studying solvation 
processes. 
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6. Discussion 

The systematic potentials developed in this work appear to be competitive with 
other published potentials, especially since only one parameter has been fitted for each 
pair interaction. For the water dimer, the structure and energy of the minimum are 
described to within experimental error, as are most of the second virial coefficient data. 
The nine other points on the water dimer surface considered here agree with 
supermolecule calculations to within basis set superposition error. For the Na+(H20)~v 
clusters, the free energies and enthalpies of complexation agree with experimental 
results at least as well as other published potentials, although the error bounds are 
fairly large. 

The SI1 Na+-H20 pair potential is expected to be one of the most accurate in the 
literature. The most important contributions to the binding energy are the ion~tipole 
and other electrostatic interactions, which are represented in detail using atom-centred 
multipoles, and the induction energy, which is modelled using accurate water 
polarizabilities. The repulsion energy depends on the shape of the electron density 
around the water molecule, and this is taken into account using large-basis-set SCF 
calculations of the charge densities of both water and Na § which are built into the 
repulsion energy using a charge density overlap integral. Spectroscopic data on the 
Na+-H20 dimer and related systems are now needed to provide the next advance in the 
accuracy of ion-molecule potentials; it is unlikely that supermolecule calculations will 
be competitive in the foreseeable future. 

The SW water potential gives remarkably good agreement with experimental data, 
considering that only one parameter has been fitted. The least accurate part of the 
potential is likely to be the induction and dispersion energy damping functions, as 
discussed in section 3, but it is possible that the fitted parameter could absorb some of 
the deficiencies in these functions. It is expected that potentials constructed in this way, 
with relatively little reliance on experiment, will continue to be important in the future, 
even for interactions between small molecules. The water dimer illustrates this point 
well. Although it has been studied more widely than any other molecule-molecule 
interaction, except possibly the HF dimer, nothing specific is yet known about its 
potential energy surface, even the structure and energy at the minimum. Development 
of an accurate pair potential would require a fitting procedure using converged six- 
dimensional bound-state calculations, which are out of the range of current 
computational power. For example, the recent calculations of Althorpe and Clary 
[101,102] were performed using an adiabatic separation of the radial motion from the 
five angular coordinates, within the coupled states approximation. This will introduce 
significant errors, of at least a few c m  -1, into the bound-state energies. Even with these 
approximations, the calculations could be used only to compare potentials, not to 
develop new ones. There is also the problem of intramolecular flexibility. The donor 
OH bond is expected to stretch significantly at the equilibrium geometry of the water 
dimer, and the HOH bond angle is likely to change in other geometries [71]. To 
account for these effects, a potential energy surface with' rigid' water molecules, as in 
this work, must be fitted to experimental data for water molecules in their vibrational 
ground states, so the resulting potential can be interpreted as an adiabatic average over 
the intramolecular degrees of freedom. Different potentials could be envisaged for 
excited vibrational states, and different potentials would be required also for 
isotopically substituted water molecules. One problem is that potentials of this type 
are unable to describe coupling between intramolecular and intermolecular modes, as 
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for example in vibrational predissociation. Instead, a full twelve-dimensional potential 
energy surface could be calculated, including the intramolecular geometry explicitly. 
This potential energy surface could then be used for all isotopes of the water molecules. 
The systematic method is ideally suited to this, since it reduces the problem to three 
intramolecular degrees of freedom. However, accurate bound-state calculations using 
a twelve-dimensional potential would be far more difficult and expensive than six- 
dimensional calculations, so for most purposes the rigid molecule approach seems 
preferable. 

The non-additive potential developed and used in this work is unlikely to be 
accurate, especially when there are four or more water molecules around the sodium 
ion. In the first solvation shell, the charge densities of the water molecules will be 
distorted by the field of the ion, which will affect the charge density overlap between 
neighbouring water molecules, and therefore change the repulsion energy. This effect 
has not been taken into account in the models; it is part of the ' deformation' energy 
calculated by Chalasifiski et al. [83, 84]. The available experimental data are not 
sufficient to fit accurate non-additive potentials for Na+(H20)N, especially since the 
data contain contributions from both the pair potentials and the non-additive poten- 
tials, and errors in the (larger) pair potentials will tend to dominate. Supermolecule 
calculations may be a better route for developing non-additive potentials in this case, 
in particular for modelling the polarization-repulsion (deformation) energy, since a 
significant contribution to this appears at the Har t r e~Fock  level. 

The monomer properties required for the systematic potentials have been 
calculated from SCF wavefunctions, and could be improved using correlated ab initio 
calculations. It is preferable to use large-basis-set, Hartree-Fock quality wave- 
functions than correlated wavefunctions obtained using smaller basis sets, even 
though the variational energies for the Har t r e~Fock  monomers will be worse, 
because the small-basis-set wavefunctions will be quite inaccurate in the outer regions 
of the valence charge density, which are crucial in calculating the charge density 
overlap intergrals and Coulomb energy integrals for the model potentials. However, 
since computer power is continually increasing, it is now becoming feasible to perform 
calculations with basis sets of similar size to those used in this work, using correlated 
ab initio methods. Even MP2 calculations could be useful: for example, they 
substantially reduce the error in the dipole moment of the water molecule [65]. The 
systematic method can be applied readily using correlated calculations, since only one 
calculation is required on each monomer. 

Monte Carlo simulations have shown that gas-phase clusters consisting of a 
sodium ion with four to six water molecules have a first solvation shell containing four 
water molecules, and a second solvation shell containing the rest. This is unlikely to be 
true in solution, since replacing the surrounding vacuum with bulk water will increase 
the external pressure and force more water molecules into the first solvation shell. It 
appears that interchange of water molecules between the first solvation shell and the 
bulk will be rapid. More details on the structure and dynamics of ion solvation will be 
provided by larger simulations, consisting of hundreds of water molecules solvating a 
single ion; for this purpose, the systematic potentials developed in this work should 
prove to be highly suitable. 

This work was funded by an Ordinary Research Fellowship from the Engineering 
and Physical Sciences Research Council. Fortran subroutines to evaluate the SI 1 and 
SW potentials are available from the author. 



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

11
:2

6 
7 

N
ov

em
be

r 2
00

7 

1114 R.J .  Wheatley 

References 

[1] NESBITT, D. J., 1994, Ann. Rev. phys. Chem., 45, 367. 
[2] LEOPOLD, K. R., FRASER, G. T., NOVlCK, S. E., and KLEMPERER, W., 1994, Chem. Rev., 94, 

1807. 
[3] RAO, C. N. R., and PRADEEP, T., 1991, Chem. Soc. Rev., 20, 477. 
[4] HUTSON, J. M., 1990, Ann. Rev. phys. Chem., 41, 123. 
[5] SELEGUE, T. J., CABARCOS, O. M., and LISY, J. M., 1994, J. chem. Phys., I00, 4790. 
[6] McKAY, R. I., BIESKE, E. J., ATKINSON, I. M., BENNETT, F. R., BRADLEY, A. J., RAINBIRD, 

M. W., ROCK, A. B., UICHANCO, A. S., and KNIGHT, A. E. W., 1990, Aust. J. Phys., 43, 
683. 

[7] HABERLAND, H., V. ISSENDORFF, B., FR6CHTENICHT, R., and TOENNI~S, J. P., 1995, J. chem. 
Phys., 102, 8773. 

[8] OI-IASHI, K., and NISHI, N., 1991, J. chem. Phys., 95, 4002. 
[9] MARKOVICH, G., GINIGER, R., LEVIN, M., and CHESHNOVSKY, O., 1991, Z. Phys., D, 20, 69. 

[10] YEH, L. I., OKUMURA, M., MYERS, J. D., PRICE, J. M., and LEE, Y. T., 1989, J. chem. Phys., 
91, 7319. 

[11] BOYS, S. F., and BERNARDI, F., 1970, Molec. Phys., 19, 553. 
[12] VAN DUIJNEVELDT, F. B., VAN DUIJNEYELDT-VAN DE RIJDT, J. G. C. M., and VAN LENTHE, 

J. H., 1994, Chem. Rev., 94, 1873. 
[13] MOROKUMA, K., 1971, J. chem. Phys., 55, 1236. 
[14] KITAURA, K., and MOROKUMA, K., 1976, Int. J. Quantum Chem., 10, 325. 
[15] JEZIORSKI, B., MOSYNSKI, R., and SZAL~WJCZ, K., 1994, Chem. Rev., 94, 1887. 
[16] WHEATLEY, R. J., and PRICE, S. L., 1990, Molec. Phys., 69, 507. 
[17] WHEATLEY, R. J., and PRICE, S. L., 1990, Molec. Phys., 71, 1381. 
[18] SIEBERS, J. G., BUCK, U., and WHEATLEY, R. J., unpublished. 
[19] BEE, T. A., BUCK, U., SIEBERS, J. G., and WHEATL~Y, R. J., unpublished. 
[20] WrmATLEY, R. J., and HUTSON, J. M., 1995, Molec. Phys., 84, 879. 
[21] AHLRICHS, R., PENCO, R., and SCOLES, G., 1977, Chem. Phys., 19, 119. 
[22] HEPBURN, J., SCOLES, G., and PENCO, R., 1975, Chem. Phys. Lett., 36, 451. 
[23] DOtSKZTIS, C., SCOLES, G., M~d~Cr~TTt, S., ZEN, M., and TrtAKKAR, A. J., 1982, J. chem. 

Phys., 76, 3057. 
[24] AZlZ, R. A., and SLAMAN, M. J., 1986, Molec. Phys., 58, 679. 
[25] TANG, K. T., and TOENNIES, J. P., 1977, J. chem. Phys., 66, 1496. 
[26] TANG, K. T., and TOENNIES, J. P., 1984, J. chem. Phys., 80, 3726. 
[27] NG, K.-C., MEATH, W. J., and ALLNATT, A. R., 1978, Chem. Phys., 32, 175. 
[28] NG, K.-C., MEATH, W. J., and ALLNATT, A. R., 1979, Molec. Phys., 37, 237. 
[29] DHAM, A. K., MEATH, W.J., ALLNATT, A. R., AZIZ, R. A., and SLAMAN, M.J., 1990, 

Chem. Phys., 142, 173. 
[30] AZIZ, R. A., SLAMAN, M. J., KOIDE, A., ALLNATT, A. R., and MEATH, W. J., 1992, Molec. 

Phys., 77, 321. 
[31] WHEATLEY, R. J., and MEATH, W. J., 1993, Molec. Phys., 79, 253. 
[32] PRICE, S. L., STONE, A. J., and ALDERTON, M., 1984, Molec. Phys., 52, 987. 
[33] STONE, A. J., 1981, Chem. Phys. Lett., 83, 233. 
[34] STONE, A. J., and ALDERTON, M., 1985, Molec. Phys., 56, 1047. 
[35] CLOUGH, S. A., BEERS, Y., KLEIN, G. P., and ROTHMAN, L. S., 1973, J. chem. Phys., 59, 

2254. 
[36] WI-IEATLEY, R. J., and MITCHELL, J. B. O., 1994, J. comput. Chem., 15, 1187. 
[37] ZEISS, G. D., and MEATH, W. J., 1977, Molec. Phys., 33, 1155. 
[38] BARTOLOTTI, L. J., 1984, J. chem. Phys., 80, 5687. 
[39] WHEATLEY, R. J., and VIEHLAND, L. A., 1994, unpublished. 
[40] D~IDI6, I., and I~BARLE, P., 1970, J. phys. Chem., 74, 1466. 
[41] DALLESKA, N. F., TJELTA, B. L., and AR~NTROUT, P. B., 1994, J. phys. Chem., 98, 4191. 
[42] MCKNIGHT, L. G., and SAW~NA, J. M., 1972, J. chem. Phys., 57, 5156. 
[43] KISTENMACHER, H., POPKIE, H., and CLEMENTI, E., 1973, J. chem. Phys., 59, 5842. 
[44] MRUZIK, M. R., ABRAHAM, F. F., SCHPd~IBER, D. E., and POUND, G. M., 1976, J. chem. 

Phys., 64, 481. 
[45] STR~TSMA, T. P., and BERENDSEN, H. J. C., 1988, J. chem. Phys., 89, 5876. 
[46] MAGNUSSON, E., 1994, J. phys. Chem., 98, 12558. 



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

11
:2

6 
7 

N
ov

em
be

r 2
00

7 

Solvation o f  sodium ions in water clusters 1115 

[47] BAUSCHLICHER, C. W., LANGHOFF, S. R., PARTRIDGE, H., RICE, J. E., and KOMORNICKI, A., 
1991, J. chem. Phys., 95, 5142. 

[48] SPIRKO, V, DAADOCH, N. M., JENSEN, H. J. A., JORGENSEN, P., and HELGAKER, T., 1991, 
Chem. Phys. Lett., 185, 265. 

[49] DACRE, P. D., 1984, Molec. Phys., 51, 633. 
[50] CALDWELL, J., DANG, L. X., and KOLLMAN, P. A., 1990, J. Amer. chem. Soc., 112, 9144. 
[51] MITCHELL, J. B. O., and PRICE, S. L., 1989, Chem. Phys. Lett., 154, 267. 
[52] BUCKINGHAM, A. D., and FOWLER, P. W., 1985, Can. J. Chem., 63, 2018. 
[53] HURST, G. J. B., FOWLER, P.W., STONE, A. J., and BUCKINGHAM, A.D., 1986, Int. J. 

Quantum Chem., 29, 1223. 
[54] GLENDENING, E. D., and STREITWIESER, A., 1994, J. chem. Phys., 100, 2900. 
[55] STONE, A. J., 1993, Chem. Phys. Lett., 211, 10l. 
[56] WHEATLEY, R. J., 1993, Molec. Phys., 79, 597. 
[57] STONE, A. J., 1978, Molec. Phys., 36, 241. 
[58] BRINK, D.M., and SATCHLER, G.R., 1968, Angular Momentum, 2nd Edn (Oxford: 

Clarendon Press). 
[59] DALGARNO, A., and DAVISON, W. D., 1966, Adv. atomic molec. Phys., 2, 1. 
[60] SINGH, T. R., and MEATH, W. J., 1971, J. chem. Phys., 54, 1137. 
[61] FIGARI, G., Musso, G. F., and MAGNASCO, V., 1985, Molec. Phys., 54, 689. 
[62] WORMER, P. E. S., and HETTEMA, H., 1992, J. chem. Phys., 97, 5592. 
[63] WHEATLEY, R. J., and MEATH, W. J., 1993, Molec. Phys., 80, 25. 
[64] FUCHS, R. R., McCoURT, F. R. W., THAKKAR, A. J., and GREIN, F., 1984, &phys. Chem., 

88, 2036. 
[65] MILLOT, C., and STONE, A. J., 1992, Molec. Phys., 77, 439. 
[66] KELL, G. S., McLAURIN, G. E., and WHALLEY, E., 1968, J. chem. Phys., 48, 3805. 
[67] EUBANK, P.T., JOFFRION, L.L., PATEL, M.R., and WAROWNY, W., 1988, J. chem. 

Thermodyn., 20, 1009. 
[68] KOZACK, R. E., and JORDAN, P. C., 1992, J. chem. Phys., 96, 3120. 
[69] CURTISS, L. A., FRURIP, D. J., and BLANDER, M., 1979, J. chem. Phys., 71, 2703. 
[70] DYKE, T. R., MACK, K. M., and MUENTER, J. S., 1977, J. chem. Phys., 66, 498. 
[71] SMITH, B. J., SWANTON, D. J., POPLE, J. A., SCHAEFER, H. F., and RADOM, L., 1990, J. 

chem. Phys., 92, 1240. 
[72] RYBAK, S., JEZIORSKI, B., and SZALEWICZ, K., 1991, J. chem. Phys., 95, 6576. 
[73] FELLER, D., 1992, J. chem. Phys., 96, 6104. 
[74] VAN DUIJNEVELDT-VAN DE RHDT, J. G. C. M., and VAN DUIJNEVELDT, F. B., 1992, J. 

chem. Phys., 97, 5019. 
[75] SAEBO, S., TONG, W., and PULAY, P., 1993, J. chem. Phys., 98, 2170. 
[76] CHAKRAVORTY, S. J., and DAVIDSON, E. R., 1993, J. phys. Chem., 97, 6373. 
[77] DANG, L. X., 1992, J. chem. Phys., 97, 2659. 
[78] oWALLQVIST, A., and BERNE, B. J., 1993, J. phys. Chem., 97, 13841. 
[79] ASTRAND, P.-O., LINSE, P., and KARLSTR6M, G., 1995, Chem. Phys., 191, 195. 
[80] FRANKEN, K. A., and DYKSTRA, C. E., 1994, J. chem. Phys., 100, 2865. 
[81] KARYAKIN, E. N., FRASER, G. T., and SUENRAM, R. D., 1993, Molec. Phys., 78, 1179. 
[82] MEATH, W. J., and Azlz, R. A., 1984, Mole& Phys., 52, 225. 
[83] CHALASII~SKI, G., SZCZ~SNIAK, M. M., CIEPLAK, P., and SCHEINER, S., 1991, J. chem. Phys., 

94, 2873. 
[84] CHALASI/qSKI, G., CYBULSKI, S. M., SZCZ~SNIAK, M. M., and SCHEINER, S., 1989, J. chem. 

Phys., 91, 7048. 
[85] WHEATLEY, R. J., 1995, Molec. Phys., 84, 899. 
[86] COOPER, A. R., and HUTSON, J. M., 1993, J. chem. Phys., 98, 5337. 
[87] BANIC, C. M., and IRIBARNE, J. V., 1985, J. chem. Phys., 83, 6432. 
[88] LYBRAND, T. P., and KOLLMAN, P. A., 1985, J. chem. Phys., 83, 2923. 
[89] REIMERS, J. R., WATTS, R. O., and KLEIN, M. L., 1982, Chem. Phys., 64, 95. 
[90] JORGENSEN, W. L., CHANDRASEKHAR, J., MADURA, J. D., IMVEY, R. W., and KLEIN, M. L., 

1983, J. chem. Phys., 79, 926. 
[91] CHANDRASEKHAR, J., SPELLMEYER, D. C., and JORGENSEN, W. L., 1984, J. Amer. chem. 

Soc., 106, 903. 
[92] Lm, G. C., and CLEMENTI, E., 1975, J. chem. Phys., 62, 2195. 



D
ow

nl
oa

de
d 

B
y:

 [I
ng

en
ta

 C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

11
:2

6 
7 

N
ov

em
be

r 2
00

7 

1116 R.J .  Wheatley 

[93] CIEPLAK, P., LYBRAND, T. P., and KOLLMAN, P. A., 1987, J. chem. Phys., 86, 6393. 
[94] DANG, L. X., RICE, J. E., CALDW~LL, J., and KO•LMAN, P. A. 1991, J. Amer. chem. Soc., 

113, 2481. 
[95] PERERA, L., and BERKOWITZ, M. L., 1991, J. chem. Phys., 95, 1954; erratum, 1993, J. chem. 

Phys., 99, 4236. 
[96] JORGENSEN, W. L., and SEWRANCE, D. L., 1993, J. chem. Phys., 99, 4233. 
[97] KIM, J., LEE, S., CrIo, S. J., MHIN, B. J., and KIM, K. S., 1995, J. chem. Phys., 102, 839. 
[98] GLENDENING, E. D., and FELLER, D., 1995, J. phys. Chem., 99, 3060. 
[99] WAIZUMI, K., MASUDA, H., and FUKUSHIMA, N., 1993, Inorg. Chim. Acta, 209, 207. 
[100] PEREZ, P., LEE, W. K., and PROHOESKY, E. W., 1983, J. chem. Phys., 79, 388. 
[101] ALTHORVE, S. C., and CLARY, D. C., 1994, J. chem. Phys., 101, 3603. 
[102] ALTHORPE, S. C., and CLARY, D. C., 1995, J. chem. Phys., 102, 4390. 


