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Abstract: Time-dependent coupled cluster theory, with unrestricted electron spins and full treatment of orbital rotation,
is used to calculate polarizabilities at imaginary frequencies for Li, Ar, HCl, CO, N2, O2, and H2O, and to obtain dispersion
energy coefficients for their pair interactions. Results obtained with augmented quadruple-zeta basis sets agree well with
the best literature values of the C6 dispersion energy coefficients. Time-dependent coupled cluster with single and double
excitations theory will be useful as a benchmark for evaluating more approximate theories.
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Introduction

The dispersion interaction energy Edisp plays a leading role in van
der Waals interactions between nonpolar molecules. At sufficiently
large intermolecular separations R, it can be approximated well by
the first few terms of a multipole series,

Edisp = −
∑
n≥6

CnR−n, (1)

where Cn is a dispersion energy coefficient. Although the mul-
tipole series diverges at small separations, the dispersion energy
coefficients are still useful for constructing models for the disper-
sion energy. The terms in eq. (1) can be multiplied by suitable
damping functions fn(R),1–4 which are 1 for large R and rapidly
tend to zero as R decreases, to correct the divergence of the
series.

The dispersion energy coefficients Cn depend on the orientations
of the molecules, but orientation-independent dispersion energy
coefficients Cdisp;λ1,λ2;λ3,λ4 can be defined,5 where λu is a real mul-
tipole component (lu, κu), and n = l1 + l2 + l3 + l4 + 2, and these
orientation-independent dispersion energy coefficients can be used
to calculate the multipolar dispersion energy at any intermolecular
geometry (RAB, �AB)

Edisp,mult,AB(RAB, �AB) = −
∑
λ1

∑
λ2

∑
λ3

∑
λ4

Tλ1,λ3(RAB, �AB)

× Tλ2,λ4 (RAB, �AB)Cdisp;λ1,λ2;λ3,λ4 . (2)

The function Tλ,λ′(RAB, �AB) is the well-known6 interaction
between a multipole Qλ of molecule A and a multipole Qλ′ of
molecule B. It consists of the product of an orientation-dependent
function and the inverse power of separation R−l−l′−1

AB .
An accurate calculation of dispersion energy coefficients is dif-

ficult for all but the smallest atoms and molecules. For large n,
polarization functions with high angular momenta are needed in
the basis set, and the calculations are sensitive to the electronic
wave function remote from the nuclei, which means that large
basis sets with a balance between diffuse and contracted functions
are required. The contribution of electron correlation to the dis-
persion energy coefficients is also important. In this article, the
implementation of an orbital-relaxed, spin-unrestricted TD-CCSD
(time-dependent coupled cluster with single and double excitations)
method for calculating dispersion energy coefficients is described,
calculations are performed using different basis sets, and the results
are compared with other methods and with calculated and exper-
imental results from the literature. The next section contains a
description of the methodology, and the subsequent section presents
the results and the conclusions.

Atomic units are used in this article; the atomic unit of length is
the Bohr, a0 = 5.291772 × 10−11 m, and the atomic unit of energy
is the Hartree, Eh = 4.35975 × 10−18 J. The dispersion energy
coefficient Cn has units of Eh an

0.
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TD-CCSD Theory

The dispersion energy coefficients for the A-B interaction that
appear in eq. (2), can be calculated using an integral of the frequency-
dependent polarizabilities of A and B, over imaginary frequencies,
using the Casimir–Polder identity:

Cdisp;λ1,λ2,λ3,λ4 = 1

2π

∫ ∞

0
αA,λ1,λ2 (iω)αB,λ3,λ4 (iω)dω. (3)

The integral is straightforward to evaluate using numerical methods
(see the following section), so the problem of calculating dispersion
energy coefficients reduces to one of evaluating the imaginary-
frequency-dependent polarizabilities of the interacting molecules.
Apart from their use in eq. (3), imaginary-frequency-dependent
polarizabilities are not physically useful quantities,5 and unlike
real-frequency-dependent polarizabilities, they usually exhibit a
maximum value at ω = 0.

The frequency-dependent polarizability αA,λ,λ′(ω) of a molecule
A in a nondegenerate ground state is formally defined as a sum over
states:

αA,λ,λ′(ω) = 2
∑
a>0

(
Ea

A − E(0)
A

)〈
ψ

(0)
A

∣∣Q̂A,λ
∣∣ψa

A

〉〈
ψa

A

∣∣Q̂A,λ′
∣∣ψ(0)

A

〉

/[(
Ea

A − E(0)
A

)2 − ω2] (4)

where Q̂A,λ is a multipole operator, ψ
(0)
A is the ground-state elec-

tronic wave function with energy E(0)
A , ψa

A is an excited-state wave
function with energy Ea

A, and ω is expressed in energy units. The
sum includes all continuum states. This work is concerned only
with imaginary frequencies ω, which do not produce singularities
in eq. (4).

In practice, the frequency-dependent polarizability can be cal-
culated using perturbation theory. The unperturbed zero-order elec-
tronic Hamiltonian Ĥ(0)

A is modified by adding a time-dependent
perturbation Q̂A(t):

ĤA = Ĥ(0)
A + µQ̂A,λ(e

iωt + e−iωt) + µ′Q̂A,λ′(eiωt + e−iωt), (5)

and this is inserted into a phase-isolated time-dependent
Schrödinger equation7

(
ĤA − i

d

dt

)
ψA = EAψA (6)

where EA is the quasi-energy.
The wave function and energy are expanded in powers of the

perturbation strengths µ and µ′, and in powers of eiωt , and the stan-
dard techniques of perturbation theory can then be used to show that
the frequency-dependent polarizability αA,λ,λ′(ω) is simply half of
the coefficient of the time-independent energy contribution, which
is first order in both µ and µ′ (and therefore second order overall).

The energy equation for the TD-CCSD method is based on the
Lagrangian formulation8 of the CCSD equations. Using a phase-
isolated ansatz, the TD-CCSD Lagrangian is

EA =
〈
φ

(0)
A

∣∣∣∣	̂Ae−T̂A(t)e−κ̂A(t)
(

Ĥ(0)
A − i

d

dt
+ Q̂A(t)

)

× eκ̂A(t)eT̂A(t)

∣∣∣∣φ(0)
A

〉
+

〈
φ

(0)
A

∣∣∣∣
[
ζ̂A, e−κ̂A(t)

×
(

Ĥ(0)
A − i

d

dt
+ Q̂A(t)

)
eκ̂A(t)

] ∣∣∣∣φ(0)
A

〉
(7)

where 	̂A is a de-excitation operator and ζ̂A is a sum of excita-
tion and de-excitation operators, and their amplitudes are Lagrange
multipliers, which are introduced to enforce the usual condi-
tions for the CCSD amplitudes, T , and for the TD-CHF orbital
rotation operators, κ̂, respectively. The operator T̂A is a sum of
single and double excitations, multiplied by CCSD amplitudes;
	̂A − 1 is a sum of single and double de-excitations, multi-
plied by λ coefficients; φ

(0)
A is the unperturbed Hartree–Fock wave

function, and the orbital rotation operators κ̂A are fixed at their
TD-CHF values. The Lagrangian EA is stationary with respect to
all Lagrange multipliers, CCSD amplitudes, and orbital rotation
coefficients.

Using the stationary properties of this Lagrangian, the required
second-order energy can be expressed in a form that contains terms
up to first order in amplitudes and orbital rotations, and zero-order
Lagrange multipliers:

E(2)
A =

〈
φ

(0)
A

∣∣∣∣	̂(0)
A e−T̂ (0)

A
1

2

[[
Ĥ(0)

A − i
d

dt
, T̂ (1)

A

]
, T̂ (1)

A

]
eT̂ (0)

A

∣∣∣∣φ(0)
A

〉

+
〈
φ

(0)
A

∣∣∣∣	̂(0)
A e−T̂ (0)

A

[[
Ĥ(0)

A − i
d

dt
, κ̂ (1)

A

]
, T̂ (1)

A

]
eT̂ (0)

A

∣∣∣∣φ(0)
A

〉

+
〈
φ

(0)
A

∣∣∣∣	̂(0)
A e−T̂ (0)

A
1

2

[[
Ĥ(0)

A − i
d

dt
, κ̂ (1)

A

]
, κ̂ (1)

A

]
eT̂ (0)

A

∣∣∣∣φ(0)
A

〉

+ 〈
φ

(0)
A

∣∣	̂(0)
A e−T̂ (0)

A
[
Q̂A, T̂ (1)

A + κ̂
(1)
A

]
eT̂ (0)

A
∣∣φ(0)

A

〉

+
〈
φ

(0)
A

∣∣∣∣
[
ζ̂

(0)
A ,

1

2

[[
Ĥ(0)

A − i
d

dt
, κ̂ (1)

A

]
, κ̂ (1)

A

]] ∣∣∣∣φ(0)
A

〉

+
〈
φ

(0)
A

∣∣∣∣[ζ̂ (0)
A ,

[
Q̂A, κ̂ (1)

A

]]∣∣∣∣φ(0)
A

〉
. (8)

The zero-order quantities in this equation are evaluated9 by per-
forming a ground-state CCSD calculation, giving T̂ (0)

A , solving the

CCSD lambda equations to obtain 	̂
(0)
A , and solving the CCSD

zeta equations to obtain ζ̂
(0)
A . The TD-CHF equations are solved to

obtain κ̂
(1)
A .

The calculation of the first-order amplitudes in T̂ (1)
A usually dom-

inates the overall computational expense, as they require essentially
a separate CCSD calculation for each perturbation. The first-order
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Table 1. Spherically Averaged Dispersion Energy Coefficients (in Atomic Units), Calculated Using the TD-CCSD Method with Unrestricted Electron Spins.

Basis set DZ TZ QZ SPTZ SPQZ Literature

Li
C0

6 1,361 1,362 1,348 1,359 1,346 1,387 (ref. 14)

C0
8 14,290 37,830 48,270 76,590 76,820

Ar
C0

6 57.9 63.6 64.0 64.3 65.1 64.3 (ref. 15)

C0
8 610 1,149 1,373 1,586 1,642

HCl
C0

6 118.4 125.0 125.3 126.8 126.7 130.4 (ref. 15)

C0
8 2,427 3,462 3,822 4,132 4,187

CO
C0

6 78.8 79.2 78.8 79.8 79.1 81.3 (ref. 16)

C0
8 2,719 2,975 3,032 3,106 3,090

N2

C0
6 72.9 73.1 72.6 73.5 72.9 73.3 (ref. 15)

C0
8 2,220 2,435 2,488 2,543 2,537

O2

C0
6 58.0 60.7 60.9 61.1 61.2 61.6 (ref. 14)

C0
8 1,373 1,629 1,723 1,782 1,813

H2O
C0

6 43.3 45.0 45.1 45.9 45.6 45.3 (ref. 14)

C0
8 832 1,052 1,109 1,162 1,174

Literature C0
6 values are taken from constrained dipole oscillator strength data.

amplitudes are obtained by making the first-order energy stationary
with respect to 	̂

(0)
A :

〈
φ

(0)
A

∣∣∣∣X̂Ae−T̂ (0)
A

{[
Ĥ(0)

A − i
d

dt
, T̂ (1)

A + κ̂
(1)
A

]
+ Q̂A

}
eT̂ (0)

A

∣∣∣∣φ(0)
A

〉
= 0

(9)

where X̂A includes all single and double de-excitations. In this equa-
tion, the imaginary part of the first-order operator [Ĥ(0)

A , κ̂ (1)
A ] is

anti-Hermitian, so some care is needed in ordering the indices of
the one-electron and two-electron integrals produced from it. These
include integrals with four virtual orbital indices, which would
require a large amount of disk storage, but in practice all contribu-
tions of these integrals to the polarizability can be rewritten so that
they do not require explicit calculation of the all-virtual quantities,
by reordering the summation over indices.

Results and Conclusions

Frequency-dependent polarizabilities are calculated for the Li and
Ar atoms, and the HCl, CO, N2, O2, and H2O molecules, with
the molecular geometries fixed at approximately their ground-state
vibrationally averaged values. The bond lengths are 2.409 a0 for
HCl, 2.132 a0 for CO, 2.081 a0 for N2, 2.288 a0 for O2, and the
origin of coordinates is taken to be the Cl atom for HCl, and a point
midway between the nuclei for the other three diatomics. For the
water molecule, the oxygen atom is placed at the origin of coor-
dinates, and the hydrogen atoms at (±1.4537,0,−1.12167) a0. The
SIMPER program10, 11 is used to perform the quantum chemical

calculations, and the CCSD energies and densities are checked for
consistency against other programs.

The methods used to calculate the frequency-dependent polariz-
abilities are the TD-CCSD method described in this article, as well
as the TD-MP212 and TD-CHF13 methods, which are defined by
replacing the CCSD Lagrangian in eq. (7) by the Møller–Plesset and
Hartree–Fock Lagrangians respectively, and the TD-UCHF (time-
dependent uncoupled Hartree–Fock) method, which is defined using
eq. (4), with the “excited states” defined as single excitations i → a
from the Hartree–Fock ground state, and the energy differences
defined as the difference of the two orbital energies εa −εi. All elec-
trons are active in all the calculations, and the open-shell species Li
and O2 are treated using unrestricted electron spins.

From the resulting frequency-dependent polarizabilities, dis-
persion energy coefficients are calculated for interactions between
homomolecular pairs using eq. (3). This produces a large number
of dispersion energy coefficients for each interaction. To reduce the
amount of data presented, only the spherically averaged C6 and C8

dispersion energy coefficients, C0
6 and C0

8 , are reported in this article.
They are defined as

C0
n =

∑
l

(
2l + 2l′

2l

)
〈Cdisp;λ,λ,λ′ ,λ′ 〉 (10)

where 2l + 2l′ + 2 = n, and the average is over all κ and κ ′. For the
C6 coefficient, this gives

C0
6 = 6(Cdisp;x,x,x,x + Cdisp;x,x,y,y + Cdisp;x,x,z,z + Cdisp;y,y,x,x

+ Cdisp;y,y,y,y + Cdisp;y,y,z,z + Cdisp;z,z,x,x + Cdisp;z,z,y,y

+ Cdisp;z,z,z,z)/9. (11)
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Table 2. Spherically Averaged Dispersion Energy Coefficients and Polarizabilities (in Atomic Units), Calculated Using the TD-UCHF, TD-CHF, TD-MP2,
and TD-CCSD Methods with the SPQZ Basis Set and with Unrestricted Electron Spins.

Method TD-UCHF TD-CHF TD-MP2 TD-CCSD NR-CCSD Literature

Li
α0 52 170 167 166 164 (ref. 14)
C0

6 327 1,393 1,356 1,346 1,387 (ref. 14)

C0
8 25,670 79,470 77,430 76,820

Ar
α0 10.0 10.7 11.2 11.1 11.2 11.1 (ref. 15)
C0

6 76.2 62.0 65.8 65.1 66.3–66.5 64.3 (ref. 15)

C0
8 1,521 1,547 1,667 1,642 1,663–1,667

HCl
α0 15.7 16.7 17.5 17.2 17.5 17.4 (ref. 15)
C0

6 152.8 122.0 129.0 126.7 129.7–131.9 130.4 (ref. 15)

C0
8 3,976 3,990 4,296 4,187 4,252–4,304

CO
α0 11.3 12.3 13.2 13.0 13.1 13.1 (ref. 16)
C0

6 90.9 74.7 81.3 79.1 80.9–82.7 81.3 (ref. 16)

C0
8 2,864 2,898 3,221 3,090 3,128–3,178

N2

α0 11.6 11.6 11.6 11.7 11.7 11.7 (ref. 14)
C0

6 97.7 73.2 72.2 72.9 73.8–74.7 73.3 (ref. 14)

C0
8 2,545 2,441 2,571 2,537 2,550–2,575

O2

α0 9.5 11.3 9.3 10.6 10.6 (ref. 14)
C0

6 71.9 62.9 57.4 61.2 61.6 (ref. 14)

C0
8 1,692 1,742 1,762 1,813

H2O
α0 7.28 8.72 9.94 9.57 9.82 9.64 (ref. 14)
C0

6 42.3 40.8 48.0 45.6 46.9–47.9 45.3 (ref. 14)

C0
8 895 1,016 1,261 1,174 1,205–1,225

NR-CCSD bounds were obtained using the Dalton program, see the text for details. Literature values are taken from
constrained dipole oscillator strength data.

The integration in eq. (3) is performed using a sum over N inte-
gration points, obtained by applying the extended trapezium rule to
tan−1(ω):

Cdisp;λ1,λ2;λ3,λ4 =
N∑

k=1

WkαA,λ1,λ2 (iωk)αB,λ3,λ4 (iωk) (12)

where ωk = tan((2k − 1)π/(4N)), and the weight Wk = (1 +
ω2

k )/(4N) includes the factor of 1/(2π) in eq. (3). Results are calcu-
lated with N = 5, and some checks are made with N = 15 to ensure
that the numerical integration does not introduce significant errors.
For the Li atom, the imaginary-frequency-dependent polarizabilities
decrease much more quickly, as ω increases from zero, than they do
for the other species. The numerical integration to obtain the disper-
sion energy coefficients for Li-Li is therefore based on tan−1(10ω),
so ωk = tan((2k − 1)π/(4N))/10 and Wk = (1 + 100ω2

k )/(40N).
Table 1 compares spherically averaged dispersion energy coeffi-

cients obtained with the TD-CCSD method using different basis sets.
The basis sets denoted DZ, TZ, and QZ are the aug-cc-pVDZ, aug-
cc-pVTZ, and aug-cc-pVQZ basis sets, respectively,17, 18 whereas
the SPTZ and SPQZ basis sets are modified versions of these,4, 19

which are designed to improve the convergence of the higher disper-
sion energy coefficients by reducing the exponents of the polariza-
tion functions. The literature values quoted are obtained from scaled
dipole oscillator strength distributions. They are believed to be the
most reliable benchmark results in the literature and are claimed to
be accurate to about 1%.

The values of C0
6 appear to have converged reasonably well,

to about 1%, with increasing basis set size. The exception is Ar,
for which further calculations with basis sets of quintuple-zeta size
indicate that the SPQZ results may be too high by 1% or more; the
reason for this is not clear. The C0

8 coefficients calculated with the
aug-cc-pVnZ basis sets are consistently smaller, and converge less
quickly with basis set size, than those calculated with the SP basis
sets. The SPTZ and SPQZ results for C0

8 are in sufficiently close
agreement that the latter can be taken as a reasonable estimate of
the basis set limit, to within about 2%, with the possible exception
of Ar. When the calculations are repeated using N = 15 values
of ω in the calculation of the dispersion energy coefficients, the
difference compared with N = 5 is always small. For example, the
largest difference in C0

6 is less than 0.02 for Ar and 0.05 for Li, and
for C0

8 the differences are less than 0.4 and 6, respectively. This is
negligible compared with the differences between the basis sets.

Journal of Computational Chemistry DOI 10.1002/jcc
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In general, the agreement between the TD-CCSD results and the
literature values of C0

6 is good. For N2, O2, and H2O, the differ-
ence is less than the estimated 1% uncertainties in the results. This
is also true for Ar, if the SPQZ result (1.2% too large) is anoma-
lous, as suggested earlier. The largest basis sets for Li, HCl, and
CO give results that are 3% too small. These discrepancies could
arise from several factors, particularly the neglect of core polariza-
tion functions in the basis set, the use of rigid molecules, and the
truncation of the coupled-cluster expansion at single and double
excitations.

Table 2 compares the TD-CCSD dispersion energy coefficients
with dispersion energy coefficients obtained using the more approx-
imate, and computationally cheaper, TD-UCHF, TD-CHF, and
TD-MP2 methods. The spherically averaged static polarizability α0

is also shown in the table. The SPQZ basis set is used for these calcu-
lations, as it is expected to give the most reliable results, particularly
for C0

8 .
The results generally reflect the expectation that accuracy will

increase in the sequence UCHF < CHF < MP2 < CCSD. Although
the TD-MP2 method is closer to the literature value of C0

6 than
the TD-CCSD method for several of the interactions, it gives dis-
crepancies of more than 7% for O2 and 5% for H2O, compared
with a maximum discrepancy of 3% for TD-CCSD. The TD-CHF
method gives discrepancies of about 10% for several interactions,
and the TD-UCHF method fails badly for Li, and substantially
overestimates C0

6 for most of the other interactions. It should be
noted that dispersion energy coefficients obtained from the TD-
UCHF method correspond exactly to the long-range limit of the
dispersion interaction energy in an MP2 supermolecule calcula-
tion, so the MP2 method is expected to be equally unreliable
for calculating the binding energies of these dimers, particularly
the weakly bonded (high-spin) dimers of Li, Ar, N2, O2, and
CO, where the dispersion energy dominates the total binding
energy.

For the TD-CHF, TD-MP2, and TD-CCSD methods, the trends
in the polarizabilities generally match those in the C0

6 dispersion
energy coefficients. Larger polarizabilities usually correspond to
larger C0

6 and C0
8 values, although there are several exceptions,

and the TD-UCHF method does not behave in the same way. The
CCSD polarizabilities are usually closer to the literature values
than the other methods, with the maximum discrepancies being
about 1%.

Published calculations of polarizabilities and dispersion energy
coefficients are generally in agreement with the results in Table 2.
For example, the TD-CHF values of C0

6 and C0
8 calculated by

Thakkar et al. for Ar20 agree with the results in the table to
within 1%, while those of Rijks and Wormer for N2,21 CO,22 and
H2O22 are 1–3% lower, presumably because they used smaller
basis sets. The MBPT calculations reported in the same papers
by Rijks and Wormer are not directly comparable with the present
results, but the MBPT calculations of Wormer and Hettema23 used
a different method which gives agreement to within 1% with the
TD-MP2 results in this article for the dispersion energy coeffi-
cients of H2O. The TD-CCSD results presented here are consistent
with the value of C0

6 = 64.9 obtained by Jaszunski et al.24 for
the argon dimer, but the CCSD(3) approximation recently used by
Korona et al.25 gives C0

6 values more than 2% higher than TD-
CCSD for the argon dimer and the water dimer. The MP2 and

CCSD polarizabilities calculated by Christiansen et al. for CO (for
example, Table III of their paper26) agree with the current results
to within 0.05 atomic units; their polarizabilities for N2 are more
than 0.1 atomic units smaller, but this may be because they use a
shorter N N bond length. Christiansen et al. also calculated the
effect of vibration on the polarizabilities, and concluded that it is
significant (>0.1 atomic unit) for CO, but not for N2. This may
help to explain the discrepancy between the TD-CCSD and best
literature values for the dispersion energy coefficient C0

6 of the CO
dimer.

In conclusion, the TD-CCSD method, combined with the SPQZ
basis set, gives C6 dispersion energy coefficients within 3% or
less of the best “experimental” literature values, for a number of
different atoms and molecules. The open-shell species Li and O2

have been treated successfully using the TD-CCSD method with
unrestricted electron spins, although the method would presumably
not be applicable to molecules with a significant multireference
character in their ground-state wavefunctions. The SPnZ series
of basis sets gives C8 coefficients that converge to the basis set
limit much more quickly than the corresponding aug-cc-pVnZ basis
sets, which have the same number of basis functions. (Further cal-
culations show that this is also true for higher Cn coefficients.)
This is because the SPnZ basis sets improve the response of the
Hartree–Fock orbitals to perturbations of higher angular momen-
tum (l > 1), whereas the aug-cc-pVnZ basis sets are optimized
for intramolecular correlation. For the C6 coefficients, there is little
to choose between the two types of basis sets, because calculat-
ing these coefficients involves only l = 1 multipole perturbations,
and the Hartree–Fock response of both basis sets to l = 1
perturbation is similar. Christiansen et al. also found that using
doubly-augmented (and larger) basis sets had little effect on the
dipole properties.27

The results also suggest that the use of “relaxed” Hartree–Fock
orbitals for calculating dispersion energy coefficients using the TD-
CCSD method is reasonable. Relaxed orbitals give results which are
formally correct to a higher order in the correlation operator than
nonrelaxed orbitals,26 and the advantage of using relaxed orbitals
for frequency-independent properties, including the polarizability
of CO, has been demonstrated by direct comparison between the
two methods.28 Additional calculations of dispersion coefficients
using the CCSD method with nonrelaxed orbitals have been per-
formed using the Dalton program29; upper and lower bounds on
the dispersion coefficients were obtained by fitting a [3,4] Padé
approximant to the Cauchy moments30 and the results are shown
in Table 2 as “NR-CCSD”. In general, the dispersion energy co-
efficients obtained from nonrelaxed orbitals appear to be larger, but
there is not clear evidence in support of either relaxed or nonrelaxed
orbitals.

The use of relaxed orbitals for frequency-dependent proper-
ties does have the possible disadvantage that poles in the (real)-
frequency-dependent polarizability occur at the TD-CHF excitation
energies, as well as at the coupled-cluster excitation energies. How-
ever, calculating dispersion energy coefficients involves imaginary-
frequency-dependent polarizabilities α(iω), which do not have
poles, and in practice they decrease smoothly from α(0) to zero as
ω increases. This makes the possible disadvantage of using relaxed
orbitals less serious, although it may be significant for Li, for which
the lowest excitation energy is small.

Journal of Computational Chemistry DOI 10.1002/jcc



6 Wheatley • Vol. 00, No. 0 • Journal of Computational Chemistry

Acknowledgments

The author thanks the Leverhulme Trust for a Study Abroad Fellow-
ship and the Royal Society for a JWT Jones Travelling Fellowship.
Dalton calculations were performed by Dr. T. Lillestolen.

References

1. Dham, A. K.; Allnatt, A. R.; Koide, A.; Meath, W. J. Chem Phys 1995,
196, 81.

2. Tang, K. T.; Toennies, J. P. J Chem Phys 2003, 118, 4976.
3. Wei, H.; Le Roy, R. J.; Wheatley, R.; Meath, W. J. J Chem Phys

2005, 122, 084321.
4. Tulegenov, A. S.; Wheatley, R. J.; Hodges, M. P.; Harvey, A. H. J Chem

Phys 2007, 126, 094305.
5. Stone, A. J. The Theory of Intermolecular Forces; Clarendon: Oxford,

2002.
6. Price, S. L.; Stone, A. J.; Alderton, M. Mol Phys 1984, 52, 987.
7. Christiansen, O.; Jørgensen, P.; Hättig, C. Int J Quantum Chem 1998,

68, 1.
8. Koch, H.; Jensen, H. J. A.; Jørgensen, P.; Helgaker, T.; Scuseria, G. E.;

Schaefer, H. F. J Chem Phys 1990, 92, 4924.
9. Pedersen, T. B.; Koch, H. J Chem Phys 1998, 108, 5194.

10. Bichoutskaia, E. N.; Hodges, M. P.; Wheatley, R. J. J Comput Methods
Sci Eng 2002, 2, 391.

11. Bichoutskaia, E. N.; Tulegenov, A. S.; Wheatley, R. J. Mol Phys 2004,
102, 567.

12. Hättig, C.; Heß, B. A. Chem Phys Lett 1995, 233, 359.

13. Langhoff, P. W.; Epstein, S. T.; Karplus, M. Rev Mod Phys 1972, 44, 602.

14. Margoliash, D. J.; Meath, W. J. J Chem Phys 1978, 68, 1426.

15. Kumar, A.; Meath, W. J. Mol Phys 1985, 54, 823.

16. Kumar, A.; Meath, W. J. Chem Phys 1994, 189, 467.

17. Dunning, T. H. J Chem Phys 1989, 90, 1007.

18. Woon, D. E.; Dunning, T. H. J Chem Phys 1993, 98, 1358.

19. Bichoutskaia, E. N.; Hodges, M. P.; Wheatley, R. J. J Comput Methods
Sci Eng 2002, 2, 391.

20. Thakkar, A. J.; Hettema, H.; Wormer, P. E. S. J Chem Phys 1992,
97, 3252.

21. Rijks, W.; Wormer, P. E. S. J Chem Phys 1988, 88, 5704.

22. Rijks, W.; Wormer, P. E. S. J Chem Phys 1989, 90, 6507.

23. Wormer, P. E. S.; Hettema, H. J Chem Phys 1992, 97, 5592.

24. Jaszunski, M.; Rizzo, A.; Jørgensen, P. Theor Chem Acc 2001, 106, 251.

25. Korona, T.; Przybytek, M.; Jeziorski, B. Mol Phys 2006, 104, 2303.

26. Christiansen, O.; Hättig, C.; Gauss, J. J Chem Phys 1998, 109, 4745.

27. Christiansen, O.; Halkier, A.; Koch, H.; Jørgensen, P.; Helgaker, T.
J Chem Phys 1998, 108, 2801.

28. Kobayashi, R.; Koch, H.; Jørgensen, P.; Lee, T. J. Chem Phys Lett 1993,
211, 94.

29. Dalton, a molecular electronic structure program, Release 2.0 (2005),
http://www.kjemi.uio.no/software/dalton/dalton.html.

30. Hättig, C.; Christiansen, O.; Jørgensen, P. J Chem Phys 1997,
107, 10592.

Journal of Computational Chemistry DOI 10.1002/jcc


